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The concept of resonances and modes for the description of particle plasmons has recently received great
interest, both in the context of efficient simulations as well as for an intuitive interpretation in physical
terms. While resonance modes have been successfully employed for geometries whose optical response is
governed by a few modes only, the resonance mode description exhibits considerable difficulties for larger
nanoparticles with their richer mode spectra. We analyze the problem using a boundary element method
approach together with a Mie solution for spherical particles, and identify the fixed link between the electric
and magnetic components of the resonance modes as the main source for this shortcoming. We suggest a
novel modal approximation scheme that allows us in principle to overcome this problem.
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Plasmonics allows light confinement at the nanoscale
[1–3]: light is bound to coherent charge oscillations at the
interface between a metallic nanoparticle and an embed-
ding dielectric, so-called particle plasmons, which come
together with strong and localized electromagnetic fields
in the vicinity of the particles [4]. The optical spectra of
plasmonic nanoparticles are usually governed by a few
resonance modes only, and one often seeks for a theoretical
description in terms of such modes instead of solving the
full Maxwell equations.
For sufficiently small nanoparticles one can employ the

quasistatic approximation where it becomes possible to
define so-called geometric eigenmodes [5–7] which can
be combined with the material properties to obtain a simple,
flexible, and intuitive description scheme widely used in the
field of plasmonics. For instance, plasmon field tomography
[8,9] and self-hybridization of non-Hermitian plasmonic
systems [10] have been demonstrated within such an
approach. Things are less obvious for the full Maxwell
equations since it is no longer possible to disentangle
geometric and material properties. The standard procedure
for defining resonance modes in this case is by means of so-
called quasinormal modes [11], which have been success-
fully employed for plasmonic nanoparticles whose optical
response is governed by a few modes only [12–16]. We also
mention the resonant state expansion method, where reso-
nance modes of a reference geometry are used for the
expansion of a deformed geometry and perturbed material
parameters [17,18], and the computation of resonace modes
for fixed frequencies [19].
In this Letter we investigate the framework of resonance

modes for larger nanoparticles with pronounced plasmon
peaks, however, with richer resonance spectra in compari-
son to small particles. We developed and implemented an
efficient and robust numerical computation scheme for
resonance modes based on the boundary element method

(BEM)which is interesting in its own right but not essential
for our findings that could have been obtained equally well
from other numerical schemes, such as the finite element
(FEM) [12–14] or finite difference time domain (FDTD)
[15,16] methods. Most importantly, we observe that even
for nanoparticles of moderate size there are significant
differences between full simulation results and those based
on resonance modes. To evaluate whether these discrepan-
cies are due to (i) a too small number of resonance modes or
(ii) a too simple prescription for the computation of the
expansion coefficients, we analyze the problem for spherical
particleswithin the frameworkofMie theory.We find that the
major shortcoming is the description of electric andmagnetic
field contributions using a single, combined expansion
coefficient,which onlyworks for small particles but becomes
in general questionable for larger ones. To overcome this
problem, we suggest a novel approximation scheme with
separate coefficients for the electric and magnetic field
components, which provides excellent agreement with full
simulations even for larger nanoparticles.
Boundary integral formulation.—To set the stage for our

following discussion, we briefly review the basic ingredients
of our boundary integral method approach. We consider
a nanoparticle with domain Ω1 that is separated by a
sharp boundary Γ ≔ ∂Ω1 from the embedding medium
Ω2 ≔ R3nðΩ1 ∪ ΓÞ. Additionally, we assume homogeneous
permittivities and permeabilities ϵ1, μ1 inside and ϵ2, μ2
outside the particle. The solution ðE;HÞ of the transmission
problem, where the nanoparticle’s response is computed for
some incoming fields, has to satisfyMaxwell equations inΩ1

and Ω2, as well as the Silver-Müller radiation condition of
outgoing waves at infinity. The total fields ðE;HÞ can be
represented by the Stratton-Chu formula in terms of the
tangential fields on the interface Γ,

e ≔ EjΓ × n; h ≔ HjΓ × n; ð1Þ
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where n denotes the unit normal vector field on the inter-
face pointing into Ω2. We use the Poggio-Miller-Chang-
Harrington-Wu-Tsai formulation [20–22] for the boundary
integral formulation of the transmission and resonance
problem. A rigorous mathematical analysis of this formu-
lation and its numerical approximation for general Lipschitz
domains was presented for the transmission problem in
Refs. [23,24] and for the resonance problem in Ref. [25]. See
also the Supplemental Material (SM) [26] for more details.
The unknown fields e, h on the boundary can then be
determined by solving the 2 × 2 block boundary integral
operator equation [see also Eq. (13) of SM [26]]

AðωÞ
�
e

h

�
¼

�
einc

hinc

�
; ð2Þ

where ðeinc;hincÞ are the tangential components of the
incident fields on the interface Γ.
Resonance modes.—In this Letter we seek to approxi-

mate the solution of Eq. (2) using the concept of resonance
modes. We call a frequency ωj ∈ C a resonance and
nonzero fields ðej;hjÞ a corresponding mode if

AðωjÞ
�
ej
hj

�
¼

�
0

0

�
: ð3Þ

Note that the resonance problem of Eq. (3) is a nonlinear
eigenvalue problemwith respect to the eigenvalue parameter
ω. It fits in the framework of eigenvalue problems for
holomorphic Fredholm operator-valued functions [29,30],
which is the basis of our analysis. Below we will present a
powerful scheme based on a contour integral method [31]
that allows us to efficiently compute all resonance modes
within a given region of the complex plane. For the moment,
we assume that ωj and the corresponding eigenmodes are
known. The central idea of the resonance mode framework
is to expand the solution of the transmission problem,
Eq. (2), in terms of a few representative modes through

�
e

h

�
≈
XJ
j¼1

αjðωÞ
�
ej
hj

�
; ð4Þ

and to compute the expansion coefficients using some
suitable prescription to be discussed below. To provide a
viable scheme, the number of modes J needed to give a
reasonable approximation should be sufficiently small. This
has been demonstrated for plasmonic nanoparticles using
FEM [12–14] and FDTD [16] simulations.
In what follows we present two schemes for the

computation of αjðωÞ. The first one is a Galerkin scheme
where we consider the approximate solution of the trans-
mission problem in the space

U ≔ spanfuj∶j ¼ 1;…; Jg; uj ≔
�
ej
hj

�
;

and use the same space for the testing functions. The
Galerkin approximation uG ¼ P

J
j¼1 α

G
j ðωÞuj is then

obtained from a variational principle that seeks for the
“best” expansion coefficients αGj ðωÞ which satisfy the
system of J linear equations,

XJ
j¼1

αGj ðωÞhAðωÞuj;uli¼ huinc;uli; l¼ 1;…;J; ð5Þ

where ·̄ denotes complex conjugation and the pairing is
defined by

��
f1
f2

�
;

�
g1

g2

��
≔ hf1;g2iΓ þ hf2;g1iΓ; ð6Þ

together with hf;giΓ ≔
R
Γðf × nÞ · gds. Note that on the

discrete level we still need to compute the transmission
matrix AðωÞ for each frequency ω, but the solution of the
matrix equation is much easier because we are now using a
drastically reduced resonance mode space.
The second approach for computing αjðωÞ is based on a

local approximation of the resolvent AðωÞ−1 by its princi-
pal part (PP) and has been proven particularly successful
for plasmonic nanoparticles [12–14]. The starting point is
Eq. (5), but we now choose as test functions the eigen-
functions ũ1;…; ũJ of the adjoint eigenvalue problem of
the operator AðωÞ, where the adjoint is considered with
respect to the pairing h·; ·̄i, as detailed in Ref. [26]. We then
obtain instead of Eq. (5) the expression

XJ
j¼1

αPPj ðωÞhuj;AðωÞ�ũli ¼ huinc; ũli; ð7Þ

whereAðωÞ� denotes the adjoint operator ofAðωÞ. We next
follow Ref. [13] and assume that close to a resonance ωl,

huj;AðωÞ�ũli ≈ 0 for j ≠ l: ð8Þ

Strictly speaking, the term on the left-hand side is zero only
for ω ¼ ωl, but one can expect that Eq. (8) also provides a
good approximation close to the resonance. For the diagonal
term, we expand the transmission operator in a Taylor series,

AðωÞ ≈AðωlÞ þ
�
dAðωÞ
dω

�
ω¼ωl

ðω − ωlÞ; ð9Þ

and keep the linear term only. With this we get

αPPl ðωÞ ¼ 1

ω − ωl

huinc; ũli
hA0ðωlÞul; ũli

þ hlðωÞ; ð10Þ

with the prime inA0ðωlÞ denoting the derivativewith respect
to ω. hlðωÞ is a holomorphic function within the neighbor-
hood ofωl which accounts for contributions not captured by
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the resonance denominator of Eq. (10). Normalizingul such
that hA0ðωlÞul; ũli ¼ 1 leads us to our final expression,

uPP ¼
XJ
j¼1

huinc; ũji
ω − ωj

uj; ð11Þ

where we have neglected the holomorphic contributions.
The right-hand side accounts for the contribution of the
principle part ofAðωÞ−1 to the solution ðe;hÞ in a neighbor-
hood of the eigenvalues ωj under consideration, in accor-
dance to Keldysh’s theorem [30].
Before pondering the results of resonance modes, it is

important to realize that the approach is based on essentially
two independent approximations. The first one concerns the
resonance modes themselves, which are computed from
Eq. (3), and the number of modes kept in the computation.
The second approximation concerns the calculation of the
expansion coefficients, using either the Galerkin approach of
Eq. (5) or the principal value approach of Eq. (11). Aswewill
demonstrate in the following, the choices for modes and
coefficients are uncritical for structures with a strongly
resonant behavior where only a few modes suffice for an
excellent approximation, but things become considerably
more complicated for larger nanoparticles whose response is
governed by a larger number of resonances.
Boundary element method.—For the numerical solution

of the matrix eigenvalue problem of Eq. (3), we use the
contour integral method as given in Ref. [31]; see also
Refs. [32,33]. The contour integral method is a reliable
method for the approximation of all eigenvalues which lie
inside of a given contour in the complex plane, and for the
approximation of the corresponding eigenvectors. It is
based on the contour integration of the resolvent AðωÞ−1
and utilizes that the eigenvalues are poles of the resolvent.
By contour integration of the resolvent, a reduction of
the nonlinear eigenvalue problem to an equivalent linear
eigenvalue problem is possible such that the eigenvalues of
the linear problem coincide with those of the nonlinear one.
In the Supplemental Material [26] we describe the basic
ideas and the main steps of our algorithm for the numerical
solution of the eigenvalue problem.
In our BEM approach we use a conforming Galerkin

boundary element method with Raviart-Thomas elements of
lowest order for the approximation of the integral operators,
the eigenfunctions, and the reference solutions of the trans-
mission problems. Themodal approximations in the numeri-
cal examples are performed on the discrete level with the
discrete counterparts of the operators and functions. For the
computations of the boundary element matrices the open-
source library BEM++ [34] is employed. The derivativeA0ðωÞ
in Eq. (10) is approximated by a difference quotient. The
required eigenvectors ũj in Eq. (10) of the adjoint problem
coincide withuj as shown in Ref. [26]. In all simulations we
consider gold nanoparticles with a Drude permittivity taken

from Refs. [13,14], and an refractive index of 1.5 for the
background medium.We emphasize that the computation of
the resonance modes is considerably more favorable for our
BEM approach than for related FEM or FDTD schemes
[12–14,16] becausewe are confronted neither with solutions
diverging at infinity (all quantities are matched at the inter-
face) nor with related difficulties regarding absorption in the
perfectly matched layers.
We start by considering in complete analogy to

Refs. [12,14] single and coupled nanocylinders, with dimen-
sions detailed in the caption of Fig. 1. As can be seen in the
figure, for the single cylinder only one resonance mode
suffices to provide excellent extinction and scattering spectra
within a broad frequency range. Similarly, for the coupled
cylinders a reasonable approximation can be achieved
for two modes, which are depicted in the Supplemental
Material [26], although in this case we already observe
deviations from the full simulation results.
Things change considerably for a simple nanosphere. As

shown in the left-hand panel of Fig. 2 for the smallest sphere
with a diameter of 50 nm, a single, threefold degenerate
resonance suffices to obtain an excellent approximation
of the optical spectra within the entire frequency regime.
However, for the larger spheres we see noticeable deviations
between the full simulations and the mode approximations

(a) (b)

(c) (d)

FIG. 1. (a),(b) Extinction Cext and scattering Csca cross sections
for nanocylinder. A threefold degenerate resonance mode is used
for the modal approximations. (c),(d) Cext and Csca for a dimer of
two nanocylinders, with two modes for the modal approxima-
tions. Black open circles represent the results of the full BEM
solutions, the blue line (PP) those of the approximation of the
resolvent by its principle part, the green line (G in V × V) those of
the Galerkin approximation in V × V, and the red dots (BA in U)
those of the best approximation with respect to L2-norm of the
reference solution in U. The single nanocylinder has a length of
d ¼ 30 nm and height of h ¼ 100 nm, in complete analogy to
Refs. [12,14]. The cylinder dimer has a gap of 45 nm, diameters
of d1 ¼ 20 and d2 ¼ 85 nm, and heights of h1 ¼ 80 nm and
h2 ¼ 145 nm, respectively. The cylinders are oriented along their
long axes z, and we consider a plane wave excitation with a
polarization along z.
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PP, with unacceptably large errors for the largest sphere. To
evaluate whether these errors are due to a limited basis or the
calculation scheme for the expansion coefficients, in the
following we introduce a “best approximation” (BA), which
weobtain by first computing the full tangential fields e,h and
then obtaining fromEq. (4) the best coefficients using a least-
squares fit. Comparing the black open and filled red symbols
in Fig. 2, we observe that the best approximation is consid-
erably better than the principal part approximation, although
for the largest sphere the deviations between the two spectra
are still surprisingly large. Similar findings as for the sphere
are made for the cube; see Fig. 3. We refrain from showing
results obtained from the Galerkin approximation in U,
see Eq. (5), since they are significantly worse.
In what follows, we first analyze the shortcomings of the

usual PP schemewithin the framework ofMie theory, which
provides analytic results for spherical nanoparticles, and then
suggest a novel modal approximation scheme, which we
denote as G in V × V for reasons to become clear in a
moment. As can be seen in all figures, this novel scheme
dramatically outperforms the PP one and gives excellent
agreement with the full simulation results throughout.
Mie theory.—For the case of a sphere we employ the

framework of Mie theory and expand the electromagnetic
fields using vector spherical harmonics and match the fields

at the sphere boundary [35]. The full derivation can be
found in Ref. [26]. In short, we obtain two types of modes,
namely the transverse magnetic eTMnm , hTM

nm and transverse
electric eTE;mn , hTE;m

n ones. Here, n and m denote the
spherical degree and order, respectively. Let kTMn and kTEn
denote the eigenvalues for these two modes, respectively.
The Mie solutions can then be expressed in the form [see
also Eq. (18) of SM [26]]

e¼
X
n;m

�
amn

ITM
e;n ðk1RÞ

ITM
e;n ðkTMn RÞe

TM
nm þbmn

ITE
e;nðk1RÞ

ITE
e;nðkTEn RÞe

TE
nm

�
;

h¼
X
n;m

�
amn

ITM
h;n ðk1RÞ

ITM
h;n ðkTMn RÞh

TM
nm þbmn

ITE
h;nðk1RÞ

ITE
h;nðkTEn RÞh

TE
nm

�
; ð12Þ

where Ie;h are functions that depend on the spherical
Bessel function jn and their derivatives, associated with the
radial parts of the modes, and a, b are the usual Mie
coefficients. The important point about Eq. (12) is that for
both TM and TE modes the expansion coefficients for e
and h (in terms of the resonance modes enm and hnm) only
coincide at the complex eigenfrequencies but are different
otherwise. Thus, tying together the electric and magnetic
fields in one vector u ¼ ðej;hjÞ, as we have previously
done in accordance to the prescriptions given in the
literature [12–14], is not supported by our Mie analysis.
Novel modal decomposition.—We finally suggest a

modal approach which allows different coefficients for
the electric and magnetic field components. We start from
the previously computed resonance modes but enlarge our
modal space using

V × V ≔ span

��
ej
0

�
;

�
hj

0

�
;

�
0

ej

�
;

�
0

hj

�	
J

j¼1

;

together with a suitable procedure (such as a singular value
decomposition) in order to remove linearly dependent
vectors from the new space. Note that ej, hj are both
tangential fields on the boundary and can thus be safely
mixed together. With the above choice we can unfortu-
nately no longer use a simple prescription similar as in
Eq. (11) for the computation of the expansion coefficients,
but must resort to a Galerkin scheme as in Eq. (5). The
symbols denoted with G in Figs. 1–3 show the results of
such calculations. Remarkably, we obtain excellent agree-
ment with the full results throughout.
Our results are encouraging as they show that the

resonance modes themselves suffice to provide excellent
agreement with full simulations even for relatively large
structures. As the modes are computed without making any
specific assumptions about the external excitation, our
approach can not only be used for plane wave excitations,
as we have done for simplicity in this work, but can be
immediately adapted to other excitation sources, such as
oscillating dipoles or swift electrons, as used in electron

FIG. 2. Extinction cross sections for nanospheres with different
diameters (upper plots) and distribution of the used resonances in
the complex plane (black crosses in lower plots). The sphere
diameters are d ¼ 50 nm (left), 100 nm (middle), and 200 nm
(right), and the number of modes are 3, 8, and 18.

FIG. 3. Extinction cross sections for nanocubes with different
side lengths (upper plots) and distribution of the used resonances
in the complex plane (black crosses in lower plots). The lengths
of the cubes are a ¼ 50 nm (left), 100 nm (middle), and 200 nm
(right), and the number of modes are 14, 25, and 54.
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energy loss spectroscopy. The major shortcoming of our
approach is that the transmission matrixAðωÞ still needs to
be computed for every frequency, although the solution of
the transmission problem in the subspace of resonance
modes is drastically reduced with respect to full simula-
tions. We have tried to generalize the approach of Eq. (11)
for separate electric and magnetic field components, but
have not yet found a satisfying solution scheme. Ideally,
the computation of the coefficients should invoke only the
resonance frequencies and modes, as well as the incoming
fields. Whether such an approach is possible will be the
subject of future work.
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