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Spatial nonlocality in the photonic response of metallic nanoparticles is actually known
to produce near-field quenching and significant plasmon frequency shifts relative to lo-

cal descriptions. As the control over size and morphology of fabricated nanostructures

is truly reaching the nanometer scale, understanding and accounting for nonlocal phe-
nomena is becoming increasingly important. Recent advances clearly point out the need

to go beyond the local theory. We here present a general formalism for incorporating

spatial dispersion effects through the hydrodynamic model and generalizations for arbi-
trary surface morphologies. Our method relies on the boundary element method, which

we supplement with a nonlocal interaction potential. We provide numerical examples in

excellent agreement with the literature for individual and paired gold nanospheres, and
critically examine the accuracy of our approach. The present method involves marginal

extra computational cost relative to local descriptions and facilitates the simulation of
spatial dispersion effects in the photonic response of complex nanoplasmonic structures.
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1. Introduction

Plasmons sustained by sharp metal tips and narrow gaps between metallic

nanostructures produce high levels of light intensity enhancement, as well as strong

concentration of the optical electromagnetic field. This is the basis of applications

such as optical detection with sensitivity down to single molecules.1,2 Equally inter-

esting is the nonlinear response associated with plasmons,3 which opens new per-

spectives for nanoscale optical computation devices. Within a local description of

the optical response based upon the use of frequency-dependent dielectric functions,

the levels of field enhancement and confinement are found to indefinitely increase

with decreasing gap distance or when the radius of curvature becomes increasingly

small in sharp tips and corners. However, the assumption of local response breaks

down at small distances due to Landau damping, a phenomenon associated with the

excitation of electron–hole pairs and involving the exchange of wave vectors> ω/vF ,

where ω is the light frequency and vF is the Fermi velocity (e.g., vF = 1.39×106 m/s

in gold). The critical distance ∼ vF /ω is then of the order of the nanometer for

visible and near-infrared light. As gap separations in the sub-nanometer regime are

already being experimentally explored,4–7 nonlocal effects cannot be ignored. The

spill out of the valence electron density outside the metal is also taking place over

sub-nanometer distances and produces further nonlocal effects. In general, nonlocal-

ity leads to plasmon blueshifts relative to a local description in these materials,7–11

as well as plasmon broadening and significant reduction in the local field enhance-

ment.12 These phenomena are thus detrimental for plasmonic applications in which

confinement and field enhancement are critical, particularly in sensing, and thus

they become important at small distances of the order of the targeted molecules.13

A rigorous theoretical approach should involve the use of linear response theory

combined with the electron wave functions of the metal structures under considera-

tion. While this procedure gives analytical results in homogeneous bulk metals,14,15

it becomes computationally involved even for the simple case of a planar interface.8

Nevertheless, the nonlocal optical response of metal clusters has been investigated

from first principles for small structures,16 and strong emphasis has been recently

placed on narrow gaps17–20 and two-dimensional (2D) plasmonic materials such

as graphene.21,22 However, these methods are not computationally affordable for

complex morphologies, which demand the development of alternative, simpler ap-

proaches to describe nonlocal effects.

A popular scheme for incorporating nonlocal effects is the hydrodynamic de-

scription,23 which introduces a pressure term that inhibits squashing electrons into

too small volumes at sharp features or hot-spots of plasmonic nanoparticles. This

approach dates back to pioneering studies of surface plasmons24,25 and has been

recently used to study plasmons in metal nanoparticles by the Mortensen group,26

including recent developments to include quantum corrections obtained from first-

principles calculations27 that capitalize on the Feibelman d-function formalism,28

and has been applied to simple geometries such as spheres or nanorods. However,
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implementations of nonlocal effects in generic Maxwell solvers, such as the finite

difference time domain (FDTD),29 finite element method (FEM),30 or boundary

element method (BEM)31,32 are needed for the simulation of complex nanoparticle

geometries.

In this paper, we present a first step towards the implementation of nonlocal

effects in a generic Maxwell solver based on BEM, and introduce two different ap-

proaches. First, we follow Dasgupta and Fuchs,33 who developed a solution scheme

for nanospheres within the quasistatic approximation, and extend their method

to generic nanoparticle geometries. Second, we adopt the approach of the Pendry

group34 to account for nonlocal effects within the hydrodynamic model by replacing

the nonlocal metal by a local metal coated by a thin artificial layer, which both

possess local permittivities chosen in order to give the same optical response as the

nonlocal metal. We critically examine the advantages and disadvantages of these

schemes for a metallic nanosphere, where analytic solutions are available, and then

continue to prove the applicability of our implementation for the more complicated

example of coupled nanoparticles.

2. Theory

2.1. Specular-reflection model

In this paper, we consider metallic nanoparticles embedded in a dielectric back-

ground with permittivity εb. As for the metal, we assume a linear but nonlocal

response, where the dielectric displacement D(r, ω) at point r is related to the

electric field E(r′, ω) at position r′ via

D(r, ω) =

∫
ε(r− r′, ω)E(r′, ω) d3r′. (1)

Throughout this work, we consider Maxwell’s equations in the frequency domain,

with ω being the angular frequency. We use Gaussian units in what follows, and

assume a homogeneous and isotropic dielectric function that only depends on the

distance |r − r′|, rather than a general function ε(r, r′, ω) that could additionally

account for modifications of the dielectric screening at the particle boundary.

We closely follow the approach of Dasgupta and Fuchs33 using, however, a no-

tation that is suited for generic nanoparticle shapes rather than only spherical

ones. For sufficiently small nanoparticles, one can employ the quasistatic approx-

imation35 and neglect retardation effects in the optical response, while retaining

the full frequency dependence in the permittivities ε(ω). The electric field can then

be expressed in terms of a scalar potential V (r, ω) via E(r, ω) = −∇V (r, ω), and

Gauss’ law becomes

∇ ·D(r, ω) = −∇ ·
∫
ε(r− r′, ω)∇V (r′, ω) d3r′ = 4πρ(r, ω), (2)

with ρ(r, ω) being the free charge distribution.36 To solve Eq. (2), we introduce the

Green function Gnl(r − r′, ω) of the unbounded nonlocal metal, which is defined

1740007-3



September 19, 2017 14:13 IJMPB S0217979217400070 page 4
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through

∇ ·
∫
ε(r− r1, ω)∇Gnl(r1 − r′, ω) d3r1 = −4πδ(r− r′). (3)

As discussed in Appendix A, the Green function can be evaluated as

Gnl(r, ω) =
2

π

∫ ∞
0

1

ε(q, ω)

sin qr

qr
dq , (4)

with ε(q, ω) being the Fourier transform of the real space permittivity ε(r, ω) and q

being a wave number. Equation (4) allows us to compute the Green function for any

kind of dielectric model, including the hydrodynamic one, which we use exclusively

below, but also for the Lindhard or Mermin ones,37,38 which have a longstanding

tradition in solid-state physics.

In a boundary integral method approach, we consider a metallic particle with

volume Ω and relate the scalar potential V1 inside the particle to the surface charge

distribution σ1(s, ω) through31

V1(r, ω) =

∫
∂Ω

Gnl(r− s′, ω)σ1(s′, ω) d2s′, (5)

where the integral extends over the particle boundary ∂Ω. Correspondingly, the

potential outside the particle can be expressed as

εbV2(r, ω) =

∫
∂Ω

G0(r− s′, ω)σ2(s′, ω) d2s′ + Vext(r, ω), (6)

with Vext(r, ω) being the electrostatic potential created by an external excitation,

such as a plane wave or a swift electron, and the free-space Green function G0(r) =
1
r defined in such a way that it satisfies ∇2G0(r−r′) = −4πδ(r−r′). Note that the

above definitions somewhat differ from previous work31,32 and are needed because

the definition of the nonlocal Green function in Eq. (3) explicitly incorporates the

dielectric function.

To compute the unknown surface charge distributions σ1,2 at the particle bound-

ary, we have to invoke the customary electric boundary conditions. The continuity

of the tangential electric field can be achieved with V1 = V2 at the particle bound-

ary. For the continuity of the normal component of the dielectric displacement, we

use D2(r, ω) = −εb∇V2(r, ω) together with

D1(r, ω) = −∇
∫
∂Ω

G0(r− s′)σ1(s′, ω) d2s′. (7)

The latter equality can be proven by taking the divergence on both sides of Eq. (7)

as well as Eq. (1), and using the defining equations for the Green functions Gnl and

G0. When approaching r → s in Eq. (7) towards the boundary, we obtain for the

normal component of the dielectric displacement31

n̂ ·D(s, ω) = ±2πσ(s, ω)−
∫
∂Ω

F0(s− s′)σ1(s′, ω) d2s′, (8)
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where n̂ is a unit vector pointing along the direction of the outer surface normal

of the boundary ∂Ω, the sign depends on whether we approach the boundary from

the outside (+) or inside (−), and F0 = (n̂ · ∇)G0.

2.1.1. BEM approach

In the BEM approach,31,32 one approximates the particle boundary by boundary

elements of finite size, such as triangles or quadrilaterals, and uses for the surface

charge distributions within each element a constant value (collocation method, used

in this work) or some interpolation scheme (Galerkin method). In the collocation

BEM approach, the surface charge distributions σ become vectors with the same di-

mension n as the number of boundary elements, and the Green functions G become

matrices of dimension n× n.

Within such an approach, the continuity of the potential and the normal dis-

placement at the boundary can be expressed as

εbGnlσ1 = G0σ2 + Vext, (9a)

(F0 + 2π1)σ1 = (F0 − 2π1)σ2 + V ′ext , (9b)

where V ′ext denotes the derivative (n̂·∇)Vext of the external potential in the direction

of the surface normal, and 1 is the unit matrix. Equations (9) provide two coupled

equations for the unknowns σ1 and σ2, which can be solved as follows:

σ2 =

[
(F0 + 2π1)

G−1
nl

εb
− (F0 − 2π1)

]−1 [
V ′ext − (F0 + 2π1)

G−1
nl

εb
Vext

]
. (10)

Once σ2 is known, we can compute through Eq. (6) the potential as well as the

electric field outside the particle, and we can in turn evaluate optical cross-sections

for plane wave excitation or electron energy-loss probabilities for swift-electron

excitation using well-known expressions.31,32 An approach similar to ours has been

also presented elsewhere.39

2.1.2. Spherical nanoparticle

For plane wave excitation, Dasgupta and Fuchs33 explicitly evaluated the plasmonic

response for a metallic nanosphere. We here briefly summarize the pertinent equa-

tions which will be used below to evaluate the accuracy of our BEM approach.

For details, the interested reader is referred to Ref. 33. Within the approach dis-

cussed above, the authors derived the following expression for the polarizability of

a metallic nanosphere:

α(ω) = a3

[
1− F (a)

1 + 2F (a)

]
, F (r) =

6a

π

∫ ∞
0

j1(qr)j1(qa)

ε(q, ω)
dq. (11)

Here, a and j1 are the radius of the sphere and the spherical Bessel function of

first-order, respectively, and we have set εb = 1. Dasgupta and Fuchs continue to
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analyze the “additional boundary conditions” (ABCs) underlying Eq. (11), which

are found to be similar to the conditions of Fuchs and Kliewer40 in the sense that

the effect of the boundary is assumed to be the same as that of a fictitious medium

which is an “image” of the real system.

An equivalent approach was pioneered by Ritchie and Marusak50 to study non-

local effects on the dispersion relation of surface plasmons in a flat metal surface,

invoking a microscopic model in which conduction electrons were specularly re-

flected at the surface, thus giving rise to the term it specular-reflection model.

However, the ABCs do not satisfy the condition that the normal component

of the polarization vector vanishes at the boundary. For the special geometry of

a sphere, this difficulty can be overcome by replacing Eq. (11) with a corrected

version

α(ω) = a3

[
1− F (a) +K(εL − 1)

1 + 2F (a) +K(εL + 2)

]
, K =

ε0a
[
dF (r)
dr

]
r=a
− 1

εL − ε0
, (12)

where εL = ε(0, ω) and ε0 is the background dielectric constant of the sphere

(see discussion below). With this correction, the component of the polarization

vector vanishes at the boundary, but not its derivative. We return to this point in

Sec. 3.

2.2. Hydrodynamic model

The hydrodynamic model provides a practical scheme for incorporating spatial

dispersion in a metal. Within linear response theory, it describes the valence electron

gas as a classical plasma which is modeled through the hydrodynamic equation41

i(ω + iγ)Jind(r, ω) = ∇[β2ρind(r, ω)]−
ω2
p

4π
E(r, ω), (13)

where Jind and ρind are the induced current and charge densities, ωp is the classical

plasma frequency, E is the local electric field, and γ is a phenomenological damping

rate. The β2 term describes the hydrodynamic pressure, which introduces nonlo-

cality in our model. Equation (13) has to be combined with the continuity equation

∇·Jind = iωρind and Poisson’s equation ∇·ε0E = 4π(ρext +ρind) to yield a nonlocal

momentum- and frequency-dependent dielectric function for the bulk metal,

ε(q, ω) = ε0 −
ω2
p

ω(ω + iγ)− β2q2
. (14)

Here, ε0 is a background dielectric constant, associated with bound electrons in

the metal (such as d-band electrons in the transition metals Au or Ag), which in

principle can also depend on frequency.

An advantage of the hydrodynamic model is that it is relatively simple and

allows us to derive analytic expressions in many cases of interest. For instance, one

can work out the Green function of Eq. (4) to get

Gnl(r) =
1

εLr
+

(
1

ε0
− 1

εL

)
e−λr

r
, λ =

ωp
β

√
1

ε0
− 1

ε0 − εL
, (15)
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where for simplicity, we have not indicated the frequency dependence of the various

quantities.

2.2.1. Spherical nanoparticle

For a spherical particle and the dielectric model of Eq. (13), one can also solve

Maxwell’s equations within the quasistatic approximation, and one obtains for the

polarizability10,34

α(ω) = a3

[
εL − εB(1 + δ)

εL + 2εB(1 + δ)

]
(16)

with

δ =

(
εL
ε0
− 1

)
j1(x)

xj′1(x)
, Q =

√
ω2
p/ε0 − ω(ω + iγ)/β,

where x = −iQa. Also, the F (r) term of the Dasgupta and Fuchs model can be

evaluated analytically and one arrives at Eq. (42) of Ref. 33. We come back to these

expressions in Sec. 3.

2.2.2. Artificial coating layer

In Luo et al.,34 the authors analyze the response function of metallic slabs, infi-

nite cylinders, and spheres described by the hydrodynamic model of Eq. (13), and

proposed a simplified description scheme consisting of (i) a metallic nanoparticle

described by a local permittivity εL(ω) = ε(0, ω), but (ii) covered by a thin artificial

coating layer of thickness d with (local) permittivity

εt =
εLεb
εL − εb

Qd , (17)

where Q is an effective wave number is related to the hydrodynamic β parameter.

For sufficiently small d values, the optical response of the hydrodynamic model

and the simplified local description scheme with an artificial coating layer can be

shown to give almost indistinguishable results. Note that for a sphere, εt contain an

additional radius-dependent scaling factor [see Eq. (2) of Ref. 34], which we neglect

here for simplicity.

The above scheme is also expected to work for more complicated nanoparticle

geometries, thus making the approach attractive for Maxwell solvers using only

local dielectric permittivities, such as FDTD, FEM or BEM solvers. In addition,

this approach works not only in the quasistatic regime, but it can also be directly

incorporated in the full solution of Maxwell’s equations including retardation. We

return to this point in more detail below.
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3. Results

3.1. BEM implementation

We have implemented the specular-reflection model33 and the artificial coating

layer model34 in the Matlab toolbox MNPBEM,32,42,43 which is a generic Maxwell

solver using the methodology of Ref. 31. In the following, we only comment on the

modifications with respect to the existing software.

In a first step, we have to compute the nonlocal Green function of Eq. (4).

In particular, the term sin(qr) with its strong oscillations for large r values has

to be treated with care. Our implementation relies on a spline interpolation44 of

ε−1(q, ω) on a sufficiently dense q grid, which in each interval [qµ, qµ+1] of the grid

is expanded in a power series, and the resulting expressions

Inµ (r) =

∫ qµ+1

qµ

sin qr

q
qn dq

are then evaluated analytically. We find it convenient to store Inµ for selected dis-

tances on an equidistant r grid, without the additional r−1 factor showing up in

Eq. (4), and to interpolate between the tabulated values when computing Gnl. For

the situations investigated in this paper, the computation of Gnl is very fast and

accurate, as verified by comparing the results for the hydrodynamic model with

those of Eq. (15).

Another critical point is the evaluation of the Green function matrix Gnl,ii

for diagonal boundary elements and elements that are sufficiently close to each

other. Because of the short-range e−λr/r term in Eq. (15), or similar short-range

contributions for different dielectric screening models, the integration within a given

boundary element ∂Ωi

Gnl,ii =

∫
∂Ωi

g(|si − s′|)
|si − s′|

d2s′ =

∫ 2π

0

dφ′
∫ Ri(φ

′)

0

dρ′g(ρ′)

has to be performed in polar coordinates with sufficiently high accuracy. In the

above expression, we have assumed a nonlocal Green function of the form g(ρ)/ρ,

si denotes the centroid of the boundary element, and Ri(φ) is the radius measured

with respect to si. Additionally, integration between neighbor elements has to be

performed with a sufficiently high number of integration points, which have to be

selected on the basis of convergence tests. We find fast convergence once the number

of integration points exceeds some threshold values, with typically 50 integration

points in the radial direction and 10 in the azimuthal one.

Similarly, for the artificial coating layer simulations, we produce the layer by

shifting the particle boundary by a small amount, typically in the range between

0.05 nm and 0.5 nm, in the direction of the outer surface normals. The Green

function element between a boundary element i and its “twin” element i′ is then
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evaluated again in polar coordinates as

G0,ii′ =

∫
∂Ωi′

1

|si − s′|
d2s′ =

∫ 2π

0

dφ′
∫ Ri′ (φ

′)

0

dρ′
ρ′

|si − s′|
,

which converges rapidly for an even smaller number of integration points. In our

simulations, we always consider curved particle boundaries43 for this kind of in-

tegration. Note that for the artificial coating layer simulations, we only have to

consider G0 because of the use of local dielectric functions. The computation of F0

can be performed in a similar fashion.

3.2. Single sphere

We start by considering a single sphere with the nonlocal dielectric permittivity

of Eq. (14). We use the same material parameters as in Ref. 34, namely ε0 = 1,

ωp = 3.3 eV, γ = 0.165 eV, and β = 0.0036c, where c is the speed of light. These

parameters mimic the dielectric response of gold. Note that in Refs. 12 and 45, a

more general approach is introduced which also allows us to incorporate d band

effects.

Figure 1 shows the results for metallic nanospheres with diameters of (a) 2.9 nm

and (b) 5.4 nm. The dashed line presents results for a local dielectric function

εL(ω) = ε(0, ω) and the dashed-dotted line corresponds to results for the nonlocal

BEM simulation based on Eq. (10). It is clear that nonlocailty leads to a significant

blueshift of the plasmon resonance, particularly for the smaller sphere, in agreement

with previous work.12,26,33,34 The + symbols report results of the analytic model of

Dasgupta and Fuchs,33 which is in perfect agreement with our BEM simulations.

(a) (b)

Fig. 1. (Color online) Absorption cross-section of a nanosphere using the hydrodynamic model,
for parameters given in text. The dashed line shows results for a local dielectric function εL(ω) =

ε(0, ω), the gray solid line is the exact solution for the hydrodynamic model of Eq. (16) in the

quasistatic limit, and the dashed-dotted line is the result of a nonlocal BEM simulation using
Eq. (10). The symbols show results of the model of Dasgupta and Fuchs without (+) and with

(×) polarization corrections. We set εb = 1 and use sphere diameters of (a) 2.9 nm and (b) 5.4 nm.
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When comparing the results to the exact nonlocal Mie solution of Eq. (16), solid

line, we observe a slight discrepancy which can be traced back to the polarization

vector P at the particle boundary. Within the description scheme of Eq. (10), which

is based on the specular-reflection model of Ref. 33 without corrections, Eq. (11),

n̂ ·P does not vanish at the boundary. In contrast, the corrected version of Eq. (12)

gives results (see symbols ×) in perfect agreement with the exact hydrodynamic

result, demonstrating the importance of the condition n̂ · P = 0 at the boundary.

Quite generally, the deviations of the specular-reflection model from the exact result

are rather small and the model has been used extensively in the literature.12,45,46

Nevertheless, for an accurate modeling, the condition n̂ ·P = 0 has to be properly

fulfilled, using for instance the methodology of Ref. 47. Such an approach is the

subject of ongoing research and will be presented elsewhere.

Figure 2 shows the simulation results for the artificial coating layer model de-

scribed in Sec. 2.2.2 using local permittivities for both metal and coating layers.

Here, the absorption cross-section of the BEM approach (see + symbols), agrees

perfectly with the exact hydrodynamic solution of Eq. (16). In a sense, this is

not surprising because the artificial coating layer model is constructed in such a

way that it gives the same results as the hydrodynamic model. Nevertheless, as

already briefly discussed above, things are slightly more complicated because of

our neglect of the radius-dependent factors in the permittivity, see also Eq. (2)

of Ref. 34. The small influence of curvature on the permittivity of the artificial

coating layer is in agreement with Luo et al.34 Thus, we conclude that for non-

local hydrodynamic simulations, the artificial coating layer model provides an ex-

cellent approach that can be easily implemented in Maxwell BEM solvers. In the

following, we show the artificial coating layer simulations, but we remark that sim-

ulations using the specular-reflection model do not lead to significantly different

results.

3.3. Coupled spheres

Figure 3 shows simulations for coupled nanospheres with a diameter of 8 nm and

different gap distances. We use the same local and nonlocal dielectric models as

in Figs. 1 and 2, but consider electron energy loss spectroscopy (EELS) simula-

tions,31,38,42 in which the plasmonic modes are probed by the energy losses experi-

enced by an electron beam. The impact parameters of the electrons are indicated

in the inset. In contrast to optical excitation, EELS spectra are usually less affected

by specific selection rules and one can thus observe more modes.

In the local spectra, Fig. 3(a), we observe for decreasing gap distance a redshift

of the dipolar bonding mode (see dashed line) and a splitting of the multipolar

modes into a broad distribution (blue spectra). Note that for the smallest gap

distances under consideration, electron tunneling might play some role,19,48,49 which

is here neglected for simplicity. In comparison, the nonlocal model predicts a less

pronounced redshift of the dipole mode and a strong modification of the broad
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(a) (b)

Fig. 2. (Color online) Same as Fig. 1 but showing results of BEM simulations for an artificial
coating layer with a thickness 0.05 nm and the permittivity of Eq. (17).

(a) (b)

Fig. 3. (Color online) EELS spectra for coupled nanospheres with 8 nm diameter and varying

gap distances (see annotation in figure); for (a) local and (b) nonlocal dieletric models. We use the
same permittivities as in Figs. 1 and 2. The impact parameters of the electron beam are indicated

in the inset. Spectra for different gap distances are offset for clarity. Dashed and dotted lines are
guides to the eye for the energy position of the bonding dipole mode in the local and nonlocal
models, respectively, and the arrows indicate the energy positions for the EELS maps of Fig. 4.

distribution associated with the multipolar modes. Both of these findings are in

agreement with previous related studies..12,26,34,45

Figure 4 shows the EELS maps for the loss energies indicated in Fig. 3. One

observes that for the largest loss energies, panels (C, F), the loss probability is
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(A) (D)

(B) (E)

(C) (F)

Fig. 4. (Color online) EELS maps for (A–C) local and (D–F) nonlocal simulations, at the loss

energies indicated with arrows in Fig. 3 (in order of increasing energy). In the inset of panel (C),

we show the color bar. Each of the maps (A–C) is scaled to its respective maximum, with identical
color ranges for panels (A, D), (B, E), and (C, F).

strongly peaked in the gap region. However, the loss in that region has a much

larger probability in the local simulation than in the nonlocal one. We attribute

this to the pressure term proportional to β2 in Eq. (13), which inhibits squashing

electrons into too small volumes in the hot spot between the two spheres. A similar

behavior is observed in panels (B, E).

4. Summary

In brief, we have presented two models for simulating nonlocal screening effects

within the BEM approach: the specular-reflection model developed by Dasgupta
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and Fuchs,33 which builds on the nonlocal Green function for a generic nonlocal

dielectric function, and the artificial coating layer model of Luo and coworkers34 that

mimics the effects of the hydrodynamic model by simulating metallic nanoparticles

with local permittivities, but covered by a thin artificial coating layer that generates

the correct reflection and transmission coefficients of the fields. We have shown that

both models can be easily implemented, with a few modifications for more refined

boundary integrations.

As for the specular-reflection model, we have discussed that further improve-

ments are needed to provide full agreement with the exact Mie results of the

hydrodynamic model. We find small deviations between the two approaches that

have been traced back to the normal component of the polarization vector, which

does not necessarily vanish at the particle boundary. As for the artificial coating

layer model, we have found excellent agreement with the hydrodynamic Mie results.

Quite generally, both approaches can be easily extended to the solution of the full

Maxwell equations and to simulations of more complex nanostructures. Future work

will additionally address the question of how to combine electrodynamic simulations

with ab initio simulations for the pertinent nonlocality parameters, thus extending

the applicability of Maxwell solvers to sharp features and narrow gap regions where

quantum corrections are expected to be of crucial importance.
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Appendix A

In this appendix, we show how to derive Eq. (4) for the Green function of the

nonlocal medium. We first introduce the spatial Fourier transform and its inverse,

G̃nl(q, ω) =

∫
e−iq·rGnl(r, ω) d3r, (A.1)

Gnl(r, ω) = (2π)−3

∫
eiq·rG̃nl(q, ω) d3q. (A.2)

The convolution of the dielectric and Green functions appearing in Eq. (3) can then

be brought to the form∫
ε(r− r1, ω)∇Gnl(r1 − r′, ω) d3r1 = (2π)−3

∫
eiq·(r−r

′)iq ε(q, ω) G̃nl(q, ω) d3q.

The term iq stems from the derivative ∇ of the Green function. Inserting this

expression into Eq. (3) and using the wave vector decomposition δ(r) = (2π)−3

1740007-13
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eiq·r d3q, we find

G̃nl(q, ω) =
4π

q2

1

ε(q, ω)
.

Thus, we get in spherical coordinates

Gnl(r, ω) =
1

4π2

∫ ∞
0

(∫ π

0

eiqr cos θ sin θdθ

)(
4π

q2

1

ε(q, ω)

)
q2dq,

which finally leads to Eq. (4) of the main text.
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45. C. David and F. J. Garćıa de Abajo, J. Phys. Chem. C 115, 19470 (2011).
46. R. Ruppin, Phys. Rev. B 45, 11209 (1992).
47. W. Yan, N. A. Mortensen and M. Wubs, Phys. Rev. B 88, 155414 (2013).
48. U. Hohenester, Phys. Rev. B 91, 205436 (2015).
49. W. Zhu et al., Nat. Commun. 7, 11495 (2016).
50. R. H. Ritchie and A. L. Marusak, Surf. Sci. 4, 234 (1966).

1740007-15


	Introduction
	Theory
	Specular-reflection model
	BEM approach
	Spherical nanoparticle

	Hydrodynamic model
	Spherical nanoparticle
	Artificial coating layer


	Results
	BEM implementation
	Single sphere
	Coupled spheres

	Summary
	Appendix A

