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Electron energy loss spectroscopy (EELS) has emerged as a powerful tool for the investigation of
plasmonic nanoparticles, but the interpretation of EELS results in in terms of optical quantities,
such as the photonic local density of states, remains challenging. Recent work has demonstrated
that under restrictive assumptions, including the applicability of the quasistatic approximation and
a plasmonic response governed by a single mode, one can rephrase EELS as a tomography scheme for
the reconstruction of plasmonic eigenmodes. In this paper we lift these restrictions by formulating
EELS as an inverse problem, and show that the complete dyadic Green tensor can be reconstructed
for plasmonic particles of arbitrary shape. The key steps underlying our approach are a generic
singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for
the determination of the expansion coefficients. We demonstrate the applicability of our scheme for
prototypical nanorod, bowtie, and cube geometries.
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Introduction

Electron energy loss spectroscopy (EELS) is a powerful
tool for the investigation of plasmonic nanoparticles.1,2

EELS is a technique based on electron microscopy and
measures the probability of a swift electron to lose part of
its kinetic energy through plasmon excitation as a func-
tion of electron beam position. Following first proof of
principle experiments,3,4 in the last couple of years EELS
has been exhaustively used for the investigation of plas-
mon modes in single and coupled nanoparticles.

Despite its success, the interpretation of EELS data
in terms of optical quantities, such as the photonic lo-
cal density of states5 (LDOS), remains challenging.6,7 To
overcome this problem, in Ref. 8 we formulated EELS
as a tomography scheme9 and showed that under cer-
tain assumptions a collection of EELS maps can be
used to reconstruct the three-dimensional mode profile
of plasmonic nanoparticles. A similar approach was pre-
sented independently by Nicoletti and coworkers,10 who
demonstrated the applicability of the scheme for a sil-
ver nanocube. Extracting three-dimensional information
through sample tilting was also shown for a split-ring res-
onator11 and a nanocrescent using cathodoluminescence
imaging.12

The problem with EELS tomography is that the mea-
surement signal (the loss probability) is not simply the in-
tegral of local losses along the electron trajectory, but in-
volves a two-step process where the swift electron first ex-
cites a particle plasmon and then performs work against
the induced particle plasmon field. This leads to a non-
local response function, which allows for a tomographic
reconstruction only under restrictive assumptions, such
as the applicability of the quasistatic approximation or
a plasmonic response governed by a single mode. In this
paper we use additional pre-knowledge, namely that the
particle plasmon fields are solutions of Maxwell’s equa-
tions and that the dyadic Green tensor5 can be decom-

posed into modes, in order to rephrase EELS in terms
of an inverse problem. We develop a rather generic
model for the EELS probabilities, which depends on a
few parameters, and determine the parameters such that
the model data match as closely as possible the mea-
sured data. Within this approach we are able to obtain
most accurate reconstructions of the dyadic Green tensor,
which, in turn, allows us to extract the three-dimensional
photonic LDOS from a collection of tilted EELS maps.
We demonstrate the applicability of our scheme for pro-
totypical nanorod, bowtie, and cube geometries.

Theory

We start by analysing EELS within a semi-classical
framework,1 where a swift electron propagating with ve-
locity v loses a tiny part of its kinetic energy by perform-
ing work against the electric field E[re(t)] produced by
itself. For sufficiently large velocities we can ignore ve-
locity changes in the electron trajectory re(t) ≈ R0 +vt,
with R0 being the impact parameter. It is convenient to
split E = Ebulk +Esurf into a bulk contribution13 Ebulk,
corresponding to the electric field within an unbounded
homogeneous medium, and a surface contribution Esurf ,
corresponding to field modifications (including surface
plasmons) from the interfaces between different materi-
als. Bulk losses are due to Cherenkov radiation and elec-
tronic excitations,1 and the loss probability is obtained
by simply multiplying the loss probability per unit length
γjbulk(ω), inside material j and for loss energy ~ω, with
the path length `j of the electron inside material j,

Γbulk(ω) =
∑
j

γjbulk(ω)`j . (1)

Bulk losses can be interpreted in terms of local scatter-
ings where the electron emits a photon or excites elec-
trons in the dielectric material, and loses part of its ki-
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netic energies. To compute the surface loss probability,
we integrate the work dW = eEsurf · vdt performed by
the electron over the entire trajectory, and decompose it
into the different loss energies ~ω according to

W = e

∫ ∞
−∞

v ·Esurf [re(t)] dt =

∫ ∞
0

~ω Γsurf(ω) dω . (2)

Thus, the energy loss probability becomes1

Γsurf(Rv̂, ω) =
e

π~ω

∫ ∞
−∞

Re
{
e−iωtv ·Esurf [re(t), ω]

}
dt ,

(3)
where we have explicitly indicated the dependence on the
electron propagation direction and the impact parame-
ter through Rv̂ = (v̂,R0). To understand the physical
process underlying Eq. (3) it is convenient to introduce
the current distribution J(r, t) = −evδ(r− re(t)) of the
swift electron and the dyadic Green tensor5 G(r, r′, ω)
that relates for a given frequency ω a current source at
position r′ to an electric field at position r via E(r, ω) =
iωµ0 G(r, r′, ω) ·J(r′, ω). The loss probability of Eq. (3)
can then be rewritten in the form

Γsurf(Rv̂, ω) =
µ0

π~

∫
Im
{
J∗(r, ω)·G(r, r′, ω)·J(r′, ω)

}
drdr′

(4)
where dr denotes integration over the spatial variable r.
Contrary to Eq. (1), the above expression describes a gen-
uinely non-local self-interaction process where the elec-
tron first induces a field (through excitation of a surface
plasmon) and then performs work against the induced
field.

In Ref. 6 the authors tried to interpret Eq. (4) in terms
of the photonic local density of states5 (LDOS)

ρn̂(r, ω) =
6ω

πω2
Im
{
n̂∗ ·G(r, r, ω) · n̂

}
, (5)

which is of paramount importance in the field of nanoop-
tics and describes how the decay rate of a quantum emit-
ter located at postion r and with dipole moment oriented
along n̂ becomes modified in presence of a structured
dielectric environment. While such interpretation can
be formally established for nano structures with transla-
tional symmetry along one spatial dimension, it becomes
problematic for nanoparticles with generic shape.7

A different interpretation of Eq. (4) in terms of a
tomography scheme was formulated independently in
Refs. 8,10. As a preliminary step, let us consider the
bulk losses of Eq. (1) for a given Rv̂ value. Then, each

point r inside a medium j contributes with γjbulk to the
total loss rate. Within the field of tomography9 it is well
known that the three-dimensional profile of γbulk(r) can
be uniquely reconstructed from a sinogram where bulk
losses are recorded for all possible propagation directions
v̂, using the inverse Radon transform. Such tomogra-
phy reconstruction is significantly more complicated for
the surface losses of Eq. (4) since Γsurf is not the sum of

local losses (as in the bulk case) but governed by the self-
interaction process of excitation and back-action. Only
for certain, rather restrictive simplifications a viable to-
mography scheme can be formulated:8,10 the nanoparti-
cles must be small enough such that the quasistatic ap-
proximation can be employed; the plasmonic response
must be governed by a single plasmonic eigenmode; the
sinogram must only consist of electron trajectories that
do not penetrate the particle; the sign of the eigenmode
potentials must be unique. Although it has been demon-
strated that reconstruction is possible in certain cases,8,10

it is obvious that the above restrictions provide a serious
bottleneck for general plasmon field tomography.

In this paper we formulate a significantly more gen-
eral scheme, which approaches the reconstruction as an
inverse problem rather than a tomography scheme. We
first describe our approach, and discuss possible problems
and generalizations at the end. First, we decompose the
dyadic Green tensor into a number of modes Ek(r, ω)

G(r, r′, ω) ≈
n∑

k=1

Ck Ek(r, ω)⊗Ek(r′, ω) , (6)

where Ck controls how much the different modes con-
tribute to the decomposition. In the following we only
consider positions r, r′ outside the plasmonic nanoparti-
cle and assume that Ek(r, ω) is a solution of Maxwell’s
equations. The expansion of Eq. (6) is generally possible
because G is a symmetric matrix that can be submit-
ted to a singular value decomposition, with Ck being the
singular values and Ek the orthogonal matrices. In this
respect, Eq. (6) is similar to a wavefunction expansion
in quantum mechanics into a complete set of basis func-
tions.

To be useful as a reconstruction scheme the modes
Ek(r, ω) should be sufficiently well adapted to the prob-
lem such that a limited number n suffices for a suitable
representation of G(r, r′, ω). Possible modes are quasi
normal modes of the plasmonic nanoparticles,14–17 which
have recently received considerable interest, or natural
oscillation modes of our boundary element method ap-
proach (see Methods). With these modes, the surface
losses of Eq. (4) become

Γ̃surf(Rv̂, ω) ≈ µ0e
2

π~

n∑
k=1

Im
{
Ck A

+(Rv̂, ω)A−(Rv̂, ω)
}
,

(7)
where A±k (Rv̂, ω) =

∫∞
−∞ e±iωz/vv̂ ·Ek(R0 + v̂z, ω) dz is

the averaged mode profile along the electron propagation
direction. We can now formulate our inverse problem as
follows. Suppose that one has measured EELS spectra
Γexp for a given loss energy and for various impact pa-
rameters and electron propagation directions. We then
determine the coefficients Ck such that the entity of mea-
surement data differs as little as possible from the model
data of Eq. (7),

min
Ck

1

2

∥∥∥Γexp(Rv̂, ω)− Γ̃surf(Rv̂, ω)
∥∥∥2
L2

, (8)
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resulting in a least square optimization (we adopt the
norm definitions ‖x‖2L2

=
∑

i |xi|2 and ‖x‖L1 =
∑

i |xi|).
Alternatively, in this work we will use a compressed sens-
ing optimization18,19

min
Ck

[∥∥∥Ck

∥∥∥
L1

+
1

2µ

∥∥∥Γexp(Rv̂, ω)− Γ̃surf(Rv̂, ω)
∥∥∥2
L2

]
,

(9)
which attempts to minimize the moduli of the expan-
sion coefficients, therefore the scheme is often referred to
as a L1-optimization, and µ is a parameter that allows
to switch between genuine compressed sensing and least
square optimizations.19 For a sufficiently small number
of expansion modes Ek, the determination of the expan-
sion coefficients Ck is a highly overdetermined problem
since the measured loss data can be assembled for many
propagation directions and impact parameters Rv̂ . The
only pre-knowlege entering our optimization is the self-
interaction-type scattering process of the electron loss,
Eq. (4), and the assumption that the dynamics of the
electric fields outside the plasmonic nanoparticles is gov-
erned by Maxwell’s equations. Importantly, once the co-
efficients Ck are determined we have (approximately) re-
constructed the dyadic Green tensor of Eq. (6), which
allows us to compute all electrodynamic properties in-
cluding the photonic LDOS.

Results

To prove the applicability of our reconstruction
scheme, we generate the “experimental” EELS data Γexp

using the simulation toolbox MNPBEM for plasmonic
nanoparticles.20,21 We first consider a silver nanorod with
dimensions 200×65×30 nm3 and compute the loss spec-
tra for the three selected impact parameters indicated in
Fig. 1a. The two prominent loss peaks at low energies
can be attributed to the dipole and quadrupole plasmon
modes. Corresponding EELS maps at the resonance fre-
quencies are shown for a few selected electron propaga-
tion directions (rotation angles) in Fig. 1c. The mode
profiles are reminiscent of the dipole and quadrupole
surface charge distributions.8 For the decomposition of
Eq. (6) into modes Ek(r, ω), we use the information
about the nanoparticle shape, which in experiment can
be obtained from additional high-angle annular dark-field
(HAADF) data,22,23 and compute the 50 natural oscilla-
tion modes of lowest energy (see Methods). Fig. 1b shows
the modulus of coefficents Ck obtained from either a com-
pressed sensing or least square optimization. Although
the two approaches give quite different Ck distributions,
the back-projected EELS maps, obtained by assembling
the dyadic Green tensor using Eq. (6) and computing

Γ̃surf from Eq. (4), both are in almost perfect agreement
with the original Γexp maps.

Having obtained the Ck values from the optimizations
of Eqs. (8,9) we can use Eq. (6) to approximately re-
construct the dyadic Green tensor which allows us to

FIG. 1: EELS spectra and maps for a silver nanorod. (a)
EELS spectra recorded at the positions indicated in the inset.
The peaks at approximately 1.5 eV and 2.7 eV are attributed
to the dipole and quadrupole plasmon mode. (b) Mode de-
composition of the dipole and quadrupole mode from the col-
lection of rotated EELS maps, using either the least square
minimization of Eq. (8) or the compressed sensing optimiza-
tion of Eq. (9). For each mode the coefficients Ck are normal-
ized to unity. (c) Selected EELS maps for dipole (upper part)
and quadrupole (lower part) mode and for different electron
propagation directions (rotation angles), as computed with
the MNPBEM toolbox.20,21 (d) Back projected EELS maps
for the Ck distribution obtained from the compressed sensing
optimization, using Eq. (6) for the Green function decompo-
sition and Eq. (4) for the calculation of the loss probabilities.
(e) Same as panel (d) but for Ck distribution obtained from
the least square optimization.

compute any electrodynamic response function for the
plasmonic nanorod. In the following we consider the pro-
jected photonic LDOS of Eq. (5). Fig. 2 shows the true
and reconstructed LDOS maps, and compares the qual-
ity of compressed sensing and least square optimizations.
In particular the inspection of panels (b) and (c), which
report the LDOS in a plane 20 nm above the nanorod,
reveals that the compressed sensing results are in very
good agreement with the true LDOS values, whereas the
least square optimization completely fails to provide even
qualitative agreement. This finding seems at first sight
surprising since both optimization approaches were pre-
viously capable of reconstructing the experimental EELS
data almost perfectly, as shown Figs. 1c–e. We attribute
the least square shortcoming to the fact that the EELS
loss of Eq. (4) is governed by the long-range tails of the
particle plasmon field distributions, with which the pass-
ing electron predominantly interacts, whereas the LDOS
of Eq. (5) is governed by the short-range evanescent field
components. Thus, when the optimization has no strong
bias on the Ck determination it comes up with the proper
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FIG. 2: Photonic LDOS of Eq. (5) and reconstructed LDOS.
(a) Three-dimensional LDOS distribution, as computed with
the MNPBEM toolbox (LDOS),20 and the distributions re-
constructed from the compressed sensing (CS) and least
square (LSQ) optimizations. The projected LDOS ρn̂(r, ω)
is shown for different projection directions n̂ = x̂, ŷ, ẑ. (b)
LDOS density map in a plane 20 nm above the nanoparti-
cle, as reconstructed from the compressed sensing optimiza-
tion. The lower (upper) part of each panel shows the dipole
(quadrupole) mode, the left (right) part shows the true (re-
constructed) LDOS. (c) Same as panel (b) but for least square
optimization. The reconstructed least square LDOS has also
negative contributions, which are set to zero for clarity.

long-range components, resulting in high-quality EELS
maps shown in Fig. 1e, but fails for the short-range com-
ponents which contribute little to the minimization func-
tion of Eq. (8). In contrast, the compressed sensing op-
timization of Eq. (9) seeks for a Ck distribution with as
few non-zero components as possible. For suitable ba-
sis functions Ek this bias helps to properly select those
modes which contribute little but still noticeably to the
loss probability of Eq. (4). We emphasize that such a
bias for selecting a sparse expansion distribution is by
no means unique to the problem of our present concern,
but has been previously highlighted in various studies,
e.g. in the context of plasmon tomography10 or single-
pixel cameras,24 and lies at the heart of the compressed
sensing algorithm.

An advantage of compressed sensing is that the recon-
struction can in general be performed even with a very

FIG. 3: Compressed sensing reconstruction for a strongly re-
duced number of measurement points. The first row shows the
measurement data for a few rotation angles. In the second row
we compare the EELS data for a finer sampling mesh (upper
part of panel) with the reconstructed signal (lower part), find-
ing almost perfect agreement. The last row reports the true
(upper part of panel) and reconstructed (lower part) LDOS
maps in a plane 20 nm above the nanorod.

limited amount of measurement data, and the quality of
the reconstructed data is usually not strongly affected by
noise.18 In Fig. 3 we show reconstructed EELS and LDOS
maps for the small number of impact parameters and ro-
tation angles shown in the first row of measurement data.
As can be seen, the quality of the reconstructed data is
extremely good despite the limited amount of measure-
ment data. This might be beneficial for EELS experi-
ments which typically suffer from a limited amount of
rotation angles (missing wedge problem) and where the
number of measurement points is often kept low to avoid
sample contamination.

Finally, in Fig. 4 we compare LDOS maps with recon-
structed maps for a (a,b) bowtie nanoparticle and (c,d)
cube. For the bowtie geometry we show the LDOS for
the two plasmon modes of lowest energy, which can be
labelled as bonding and anti-bonding according to the
parallel and antiparallel orientation of the dipole mo-
ments of the individual nanotriangles.25 The agreement
between the true and reconstructed LDOS maps is very
good, in particular one can clearly observe the strongly
increased LDOS enhancement in the gap region. For the
cube we show the dipole and corner modes of lowest en-
ergy,10 finding fair agreement between the true and re-
constructed LDOS maps. We attribute the small differ-
ences to problems of our algorithm when dealing with
degenerate modes of symmetric particles, which might
be improved by explicitly accounting for mode symme-
tries.26

Summary and discussion

To summarize, we have shown how to extract the
dyadic Green tensor of Maxwell’s theory from a collection
of EELS maps recorded for different electron propagation
directions (rotation angles). Our reconstruction scheme
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FIG. 4: (a) True (upper row) and reconstructed (lower row)
LDOS for a bowtie geometry (total size 215×85×30 nm3 and
10 nm gap) and for the bonding and anti-bonding modes of
lowest energy. Color code is identical to Fig. 2. (b) Density
map of LDOS in a plane 20 nm above the bowtie structure.
(c) True (left) and reconstructed (right) LDOS for a cube with
150 nm side length, and for the dipole and corner modes of
lowest energy.10 (d) Density map of LDOS in a plane 30 nm
above the cube.

is based on a singular-value decomposition of the Green
tensor and a compressed-sensing optimization for the ex-
pansion coefficients. We have demonstrated the applica-
bility of our approach for various elementary nanoparti-
cle shapes. We foresee several improvements for plasmon
tomography based on EELS. On the experimental side,
electron holography22 can provide additional information
and could allow to disentangle the excitation and mea-
surement channels of plasmonic EELS. On the theoretical

side, the presented reconstruction scheme works surpris-
ingly well for most nanoparticle geometries, but further
work is needed to clarify the role of various ingredients.

First, there are several possibilities for chosing the ba-
sis functions for the decomposition of the dyadic Green
tensor, Eq. (6). In this work we have chosen biorthogo-
nal “constant flux states”27 that are the eigenstates of
the Green function evaluated for real frequencies (see
Methods). They have the advantage that they can be
computed rather straightforwardly, even in case of de-
generate or near-degenerate modes, on the other hand
they have to be computed for each loss energy separately
and several of these modes can govern the plasmonic re-
sponse. Another possibility for a basis are the quasi nor-
mal modes evaluated at the poles of the Green function in
complex frequency space.14–17 The computation of these
modes requires an iterative solution scheme,17 however,
once they are computed they can be used for a large fre-
quency range and in general the plasmonic response is
only governed by very few of these modes.

In this work we have considered the situation where
the basis is already computed for the true nanoparticle
shape, and have shown that even in this case the EELS
tomography scheme can be quite tricky. However, our
approach is less restrictive than it may appear: in princi-
ple, for electron beams not penetrating the nanoparticle
any basis with modes being solutions of the free-space
Maxwell’s equations can be employed. Thus, even if a
slightly different particle shape or dielectric material is
considered in the computation of the basis, this will not
necessarily degrade the quality of the reconstruction. In
this case it might be beneficial to adapt our approach
such that (i) the modes for the Green function decom-
position are expanded in a given non-ideal basis, and (ii)
the compressed sensing algorithm seeks for a minimum
number of decomposition modes. Here it might be ad-
vantageous to use quasi normal modes, because the same
few modes could be optimized for a whole range of loss
energies, thus imposing stronger restrictions in compar-
ison to an independent optimization at individual loss
energies.

Although further work is needed to establish EELS
tomography of plasmonic nanoparticles as a robust and
out-of-the-box scheme, we believe that our present work
provides an important step forwards for reconstruct-
ing electrodynamic quantities from EELS measurements,
and makes significant progress with respect to the re-
cently developed tomography schemes that were bound
to quasistatic approximation and other restrictive as-
sumptions.

Methods

Simulations. In our simulation approach we compute
the LDOS and EELS spectra using the MNPBEM tool-
box20,21 and a silver dielectric function extracted from
optical experiments.28
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Mode decomposition. For the mode decomposition
of Eq. (6) we follow the prescription of Garćıa de Abajo et
al.29 and compute the natural oscillation modes through
diagonalization of the Σ matrix, see Eq. (21) of Ref. 29
for details, keeping for the solution of the inverse problem
the 50 modes of lowest energy. A higher number of modes
didn’t show a significant improvement in the reconstruc-
tion results. For our mode decomposition it turns out to
be convenient to use a biorthogonal basis, similarily to
the quasistatic case.30 Our approach closely follows re-
cent related work,17 and we introduce the right and left
eigenmodes Ek(r, ω) and Ẽk(r′, ω) associated with the
Σ matrix, respectively. Instead of the decomposition of
Eq. (6) we then use

G(r, r′, ω) ≈
n∑

k=1

Ck Ek(r, ω)⊗ Ẽ∗k(r′, ω) ,

and accordingly also modify Eq. (7). The biorthogonal
expansion turns out to be advantageous in particular for
nanoparticles with degenerate modes, as it automatically
guarantees proper mode orthonormalization.

Compressed sensing. The least square op-
timization is performed with the built-in Mat-

lab functions, for the compressed sensing optimiza-
tion we use the YALL1 software freely available at
http://yall1.blogs.rice.edu/. We set the mixing
parameter µ = 5 × 10−2 and the stopping tolerance
has a value of 10−4. We take twelve rotated EEL-
maps for each structure with equidistant angles between
0 and 180◦, each map consisting of 31×51 points. To
speed up the optimization process we take only 2000
random measurement points of the generated maps.
Further, only measurement points with distance more
than 15nm away from the particle surface are used
for optimization. For the volume visualization of the
LDOS we use the MatVTK software freely available at
http://hdl.handle.net/10380/3076.
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