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Abstract

Within the MNPBEM toolbox, developed for the simulation of plasmonic nanoparticles using a boundary
element method approach, we show how to include substrate and layer structure effects. We develop the
methodology for solving Maxwell’s equations using scalar and vector potentials within the inhomogeneous
dielectric environment of a layer structure. We show that the implementation of our approach allows for
fast and efficient simulations of plasmonic nanoparticles situated on top of substrates or embedded in layer
structures. The new toolbox provides a number of demo files which can be also used as templates for other
simulations.
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Program summary

Program title: MNPBEM toolbox
Programming language: Matlab 7.13.0 (R2011b)
Computer: Any which supports Matlab 7.13.0 (R2011b)
Operating system: Any which supports Matlab 7.13.0 (R2011b)
RAM required to execute with typical data: ≥ 4 GByte
Has the code been vectorised or parallelized?: yes
Keywords: Plasmonics, boundary element method, substrates and layer structures
CPC Library Classification: Optics
External routines/libraries used: no
Nature of problem: Simulation of plasmonic nanoparticles placed on substrates or within layer structures
Solution method: Boundary element method using electromagnetic potentials
Running time: Depending on surface discretization between seconds and hours

1. Introduction

Plasmonics provides an ideal tool for light confinement at the nanoscale [1–4]. A light wave excites
coherent charge oscillations at the interface between metallic nanoparticles and a surrounding medium, so-
called surface plasmons, which come together with strongly localized, evanescent fields. In a reversed process,
quantum emitters such as molecules or quantum dots, located in the vicinity of plasmonic nanoparticles,
couple to the evanescent fields and thereby use the nanoparticles as nano antennas to emit radiation more
efficiently [5]. Possible plasmonics applications range from photovoltaics, over sensorics and metamaterials,
to optical and quantum-optical information processing [6].
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Figure 1: Schematics of MNPBEM simulations including layer structures. (a) We first set up a layerstructure by providing
a table of dielectric functions, a pointer ind to this table for the layer materials in descending order, and the z-values of
the layer interfaces. (b) Next, we define a grid for the tabulation of the reflected Green functions. With the command
tabspace(layer,p,pt) we automatically generate the grids for a comparticle object p and an additional compoint object
pt. The latter points allow us to compute electromagnetic fields within the grid ranges. (c) We finally set up an object
compgreentablayer for the tabulated Green functions. Once the layer structure is defined and the table of Green functions is
pre-computed, BEM simulations can be performed as previously described for the MNPBEM toolbox without layer structures
[21].

The simulation of plasmonic nanoparticles deals with the solution of Maxwell’s equations. For this
reason, most of the simulation software builds on general Maxwell solvers such as the dyadic Green function
technique [7, 8], the finite difference time domain (FDTD) [9–12], the discontinuous Galerkin time-domain
(DGTD) [13], or the discrete dipole approximation (DDA) [14–16] methods. Another computational scheme
is the boundary element method (BEM) [17–20], which is based on the assumption that the plasmonic
nanoparticles consist of materials with homogeneous and isotropic dielectric functions separated by abrupt
interfaces.

In the last couple of years we have developed a Matlab toolbox MNPBEM for the simulation of plasmonic
nanoparticles using the BEM approach [21, 22]. This toolbox has been successfully employed by us and other
groups. It includes plane wave excitation and the computation of scattering, extinction, and absorption cross
sections, as well as dipole excitations together with the computation of total and radiative scattering rates.
This allows one to compute the dyadic Green function or the photonic local density of states. Additionally,
we provide classes for the simulation of electron energy loss spectroscopy (EELS) of plasmonic nanoparticles
[22].

In this paper we discuss a new version of the MNPBEM toolbox which allows for the simulation of plas-
monic nanoparticles located in layer structures. Indeed, many experiments are performed with nanoparticles
situated on top of a substrate or embedded inside a layer structure, which calls for the possibility to perform
corresponding simulations. Unfortunately, for the potential-based BEM approach of Garćıa de Abajo and
coworkers [17, 19, 23] it has been unclear whether and how layer effects can be included. In this paper
we develop the methodology for BEM simulations including layer effects, and present a fast and flexible
implementation within the MNPBEM toolbox.

To speed up the simulations, we compute at the beginning of each simulation a table of reflected Green
functions which is then used for interpolation. To include layer structure effects in plasmonics simulations,
one must only define a few additional things in comparison to MNPBEM simulations of nanoparticles
embedded in a homogeneous dielectric background (see Fig. 1):

1. First, one defines the layer structure. The user must provide a table of dielectric functions, an index
array that points to the materials of the different layers, and the positions of the layer interfaces.

2. With this layer structure one defines a grid on which the tabulated Green functions are computed.
The toolbox provides functions for setting up these grids either automatically (as we recommend) or
manually.

3. In the next step one sets up a table for reflected Green functions and computes them for various
wavelengths. The underlying computation requires the evaluation of Sommerfeld-type integrals [7, 24],
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Figure 2: Planewave excitation of gold nanosphere, (a) without and (b) with layer structure. The diameter of the sphere is 20
nm, the distance between substrate and sphere is 5 nm. We assume plane wave excitation from above and use 144 vertices for
the discretization of the sphere boundary. The data of the gold dielectric functions are taken from optical experiments [25]. In
panel (a) we compare our simulation results with Mie theory.

and is often rather slow.

4. Once the layer structure and the tabulated Green functions are computed, one can run the BEM
simulations as previously described [22].

We have organized this paper as follows. In Sec. 2 we discuss how to install the toolbox and give a few
examples for plasmonics simulations with layer structures. The methodology underlying our approach is
presented in Sec. 3 and details about our implementation are given in Sec. 4. In Sec. 5 we present a number
or representative examples and compare our toolbox implementation with other approaches. Finally, we
summarize our approach in Sec. 6.

2. Getting started

2.1. Installation of the toolbox

To install the toolbox, one must simply add the path of the main directory mnpbemdir of the MNPBEM

toolbox as well as the paths of all subdirectories to the Matlab search path. This can be done, for instance,
through

addpath(genpath(mnpbemdir));

To set up the help pages, one must once change to the main directory of the MNPBEM toolbox and run
the program makemnpbemhelp

>> cd mnpbemdir;

>> makemnpbemhelp;

Once this is done, the help pages, which provide detailed information about the toolbox, are available in the
Matlab help browser. The help pages can be found on the start page of the help browser under Supplemental
Software. The toolbox is similar to our previously published versions [21, 22] but with a few modifications
discussed in the following.
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Table 1: Demo programs for simulations with layer structures provided by the MNPBEM toolbox. We list the names of the
programs, typical runtimes, and give brief explanations. stat refers to demo files using the quasistatic approximation, with
simulations using image charges, and ret to simulations of the full Maxwell equations. The programs were tested on a standard
PC (Intel i7–2600 CPU, 3.40 GHz, 8 GB RAM).

Demo program Runtime Description

demospecstat10.m 4 sec Light scattering of metallic nanosphere above substrate
demospecstat11.m 4 sec Field enhancement for metallic sphere above substrate
demospecstat12.m 8 sec Light scattering of nanodisk above substrate
demospecstat13.m 13 sec Field enhancement for metallic disk above substrate

demospecret6.m 30 sec Light scattering of metallic nanosphere above substrate
demospecret7.m 40 sec Field enhancement of metallic nanosphere above substrate
demospecret8.m 1 min Scattering spectra for metallic nanodisk on substrate
demospecret9.m 40 sec Scattering spectra for substrate using PARFOR loop
demospecret10.m 47 sec Nearfield enhancement for metallic nanodisk on substrate
demospecret11.m 2 min Scattering spectra for two nanospheres in layer
demospecret12.m 1 min Nearfield enhancement for two nanospheres in layer
demospecret13.m 8 min Spectra for metallic nanodisk approaching substrate
demospecret14.m 15 min Spectra for metallic nanodisk on top of substrate

demodipstat5.m 8 sec Lifetime reduction for dipole between sphere and layer
demodipstat6.m 22 sec Electric field for dipole between sphere and layer
demodipstat7.m 36 sec Photonic LDOS for nanodisk above layer
demodipstat8.m 23 sec Electric field for dipole close to nanodisk and layer
demodipret8.m 24 sec Lifetime reduction for dipole between sphere and layer
demodipret9.m 50 sec Electric field for dipole between sphere and layer
demodipret10.m 7 min Photonic LDOS for nanodisk above layer
demodipret11.m 32 sec Electric field for dipole close to nanodisk and layer

2.2. A simple example

2.2.1. Scattering spectra of sphere without layer structure

We first describe how to compute the scattering spectra for a sphere embedded in a homogeneous
dielectric environment.

% options for BEM simulation

op = bemoptions( ’sim’, ’ret’ );

% table of dielectric functions

epstab = { epsconst( 1 ), epstable( ’gold.dat’ ) };

% initialize sphere

p = comparticle( epstab, { shift( trisphere( 144, 20 ), [ 0, 0, 15 ] }, [ 2, 1 ], 1, op );

In the first command line we set up an options structure and define that we want to perform a retarded
simulation using the full Maxwell equations. In the second command line we define a table of dielectric
functions, consisting of air (ε = 1) and a dielectric function representative of gold [25]. Finally, we set up
a comparticle object that defines the dielectric environment. We define one boundary of spherical shape,
with 144 vertices and a diameter of 20 nm, which is shifted into the upper half space (this has no effect
for a sphere embedded in a homogeneous background, but will be important for layer structures). The
[2,1] parameter indicates that the material inside the boundary is epstab{2}, and the outside material is
epstab{1}. We finally indicate that the nanosphere has a closed boundary and pass the options structure
op that controls the integration over boundary elements. A more detailed description of the toolbox syntax
has been given elsewhere [21, 22] and can be also found in the help pages of the toolbox.

Once we have defined the dielectric environment, we can compute the scattering cross sections for different
wavelengths enei and plot them
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% set up BEM solver

bem = bemsolver( p, op );

% plane wave excitation

exc = planewave( [ 1, 0, 0 ], [ 0, 0, -1 ], op );

% light wavelength in vacuum

enei = linspace( 400, 900, 40 );

% allocate scattering cross section

sca = zeros( size( enei ) );

% loop over wavelengths

for ien = 1 : length( enei )

% surface charge

sig = bem \ exc( p, enei( ien ) );

% scattering cross section

sca( ien, : ) = exc.sca( sig );

end

% final plot

plot( enei, sca, ’o-’ ); hold on;

xlabel( ’Wavelength (nm)’ );

ylabel( ’Scattering cross section (nm^2)’ );

Figure 2(a) shows the scattering spectra together with the corresponding Mie solutions. We note that in
comparison to the previous versions of the toolbox, we have now introduced wrapper functions bemsolver

and planewave that select from the options structure the appropriate BEM solvers and excitation classes.

2.2.2. Scattering spectra of sphere with layer structure

The above example has to be only slightly modified for a simulation where the nanosphere is located
above a substrate. First we set up the layer structure

% table of dielectric functions

epstab = { epsconst( 1 ), epstable( ’gold.dat’ ), epsconst( 2.25 ) };

% set up layer structure

layer = layerstructure( epstab, [ 1, 3 ], 0 );

% options for BEM simulation

op = bemoptions( ’sim’, ’ret’, ’layer’, layer );

In the first command line we add an additional dielectric constant for glass to epstab. Next, we define
a layer structure with the table of dielectric functions. The second index argument [1,3] indicates that
the layer structure consists of two dielectric materials, the upper one is epstab{1} and the lower one is
epstab{3}. Finally, with the third input argument the layer interface is set to z = 0. Once the layer
structure is defined, we must add it to the options structure.

An essential ingredient of BEM simulations with layer structures is the computation of reflected Green
functions. Within the MNPBEM toolbox, we compute at the beginning of the simulation a table of reflected
Green functions, which is then added to the options structure

% automatic grid for tabulation

tab = tabspace( layer, p );

% initialize Green function table

greentab = compgreentablayer( layer, tab );

% precompute Green function table for wavelength array ENEI

greentab = set( greentab, enei, op );

% add tabulated Green functions to options structure

op.greentab = greentab;
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The meaning of the various command lines will be discussed in depth in the following sections and in the
help pages of the toolbox. In short, we first set up a grid tab for the tabulated Green function. Next, we
set up a compgreentablayer object that holds the tabulated Green functions, and compute them through
the set command. Once the reflected Green function table is computed, we add it to the options structure.

The remaining simulation is identical to the one without layer structure. Figure 2(b) compares the
scattering spectra without and with substrate.

The MNPBEM toolbox comes together with a number of demo files which are briefly described in Table 1.
We recommend to work through these demo files and to use them as templates for further simulations.

3. Theory

3.1. BEM equations without layer structure

We start by briefly reviewing the BEM approach developed by Garćıa de Abajo and coworkers [17, 19, 23]
We consider dielectric nanoparticles, described through local and isotropic dielectric functions εj(ω), which
are separated by sharp boundaries ∂Vj . Throughout, we set the magnetic permeability µ = 1 and consider
Maxwell’s equations in frequency space ω [26] (we adopt a Gaussian unit system).

The basic ingredients of the BEM approach are the scalar and vector potentials φ(r) and A(r), which
are related to the electromagnetic fields via

E = ikA−∇φ , B = ∇×A . (1)

Here k = ω/c and c are the wavenumber and speed of light in vacuum, respectively. The potentials are
connected through the Lorentz gauge condition ∇·A = ikεφ. Within each medium, we introduce the Green
function for the Helmholtz equation defined through(

∇2 + k2j
)
Gj(r, r

′) = −4πδ(r − r′) , Gj(r, r
′) =

eikj |r−r
′|

|r − r′|
, (2)

with kj =
√
εjk being the wavenumber in the medium r ∈ Vj . For an inhomogeneous dielectric environment,

we then write down the solutions of Maxwell’s equations in the ad-hoc form [17, 23]

φj(r) = φej(r) +

∮
∂Vj

Gj(r, s)σj(s) da (3a)

Aj(r) = Ae
j(r) +

∮
∂Vj

Gj(r, s)hj(s) da , (3b)

where φej and Ae
j are the scalar and vector potentials characterizing the external perturbation (e.g., plane

wave or oscillating dipole) within a given medium j. Owing to Eq. (2), these expressions fulfill the Helmholtz
equations everywhere except at the particle boundaries. σj and hj are surface charge and current distribu-
tions, which are chosen such that the boundary conditions of Maxwell’s equations at the interfaces between
regions of different permittivities εj hold.

In what follows, we introduce in accordance to Refs. [17, 19, 23] matrix notations of the form Gσ instead
of the integration given in Eq. (3a). This also allows us to immediately change to a boundary element
method (BEM) approach, where the boundary is split into elements of finite size suitable for a numerical
implementation. With σ1 and h1 denoting the surface charges and currents at the particle insides, and σ2
and h2 the corresponding quantities at the particle outsides, we obtain from the continuity of the scalar and
vector potentials at the particle boundaries the expressions

G1σ1 −G2σ2 = φe2 − φe1 , G1h1 −G2h2 = Ae
2 −Ae

1 . (4)

From the continuity of the Lorentz gauge condition and the dielectric displacement at the particle boundary,
we get

H1h1 −H2h2 − ikn̂(ε1G1σ1 − ε2G2σ2) = α , α = (n̂ · ∇)(Ae
2 −Ae

1) + ikn̂(ε1φ
e
1 − ε2φe2) (5a)

ε1H1σ1 − ε2H2σ2 − ikn̂(ε1G1h1 − ε2G2h2) = De , De = n̂ · [ε1(ikAe
1 −∇φe1)− ε2(ikAe

2 −∇φe2)] , (5b)
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where n̂ is the outer surface normal of the boundary ∂V , and we have introduced the surface derivatives of
the Green function H1,2 = (n̂ · ∇)G1,2 ± 2π. Eqs. (4) and (5) form a set of four coupled equations that can
be solved within a boundary element method (BEM) approach in order to obtain the surface charges and
currents, which provide a unique solution for the problem under study [17, 19, 23].

3.2. BEM equations with layer structure

Suppose that we have a substrate or layer structure where the outer surface normals point in z-direction.
Inspection of Eq. (5) reveals that in this case (i) the parallel component of h‖ does not couple with h⊥

and σ, and (ii) h⊥ and σ become coupled through layer interactions. This forms the basis of the BEM
equations for layer structures. First, we rewrite Eqs. (4) and (5) for a layer structure. Secondly, we express
h‖ in terms of h⊥ and σ. Finally, we set up the coupled equations for h⊥ and σ and solve them within
a boundary element method approach through matrix inversion. Contrary to the BEM approach without
layer structures, which only deals with matrices of order N of the number of boundary elements, the BEM
approach with layer structures deals with matrices of the order 2N .

We consider a nanoparticle located in the dielectric environment of a layer structure and assume that all
boundary elements connected to the layer structure are outer elements (defined with respect to the surface
normals and indicated with 2). In the spirit of Ref. [17], the potentials inside the nanoparticle can still be
expressed in the ad-hoc form of Eq. (3). For the boundary elements outside the nanoparticle, we (i) have
to replace G by the Green function for the layer structure and (ii) have to account for the fact that h⊥2 and
σ2 become coupled,

φ2 = φe2 +Gσσ2 σ2 +Gσh2 h⊥2 , A⊥2 = Ae⊥2 +Ghh2 h⊥2 +Ghσ2 σ2 . (6)

We will show in Sec. 3.3 how to compute the various reflected Green functions. Next, we re-derive the BEM
equations of the previous section for layer structures. The continuity of the potentials now becomes

G1σ1 = Gσσ2 σ2 +Gσh2 h⊥2 + ϕ , ϕ = φe2 − φe1 (7a)

G1h
‖
1 = G

‖
2h
‖
2 + a‖ (7b)

G1h
⊥
1 = Ghh2 h⊥2 +Ghσ2 σ2 + a⊥ , a = Ae

2 −Ae
1 . (7c)

The continuity of the Lorentz condition reads

H1h
‖
1 −H2h

‖
2 − ikn̂‖

(
ε1G1σ1 − ε2Gσσ2 σ2 − ε2Gσh2 h⊥2

)
= α‖ (8a)

H1h
⊥
1 −H2h

⊥
2 −Hhσ

2 σ2 − ikn̂⊥
(
ε1G1σ1 − ε2Gσσ2 σ2 − ε2Gσh2 h⊥2

)
= α⊥ , (8b)

and the continuity of the dielectric displacement becomes

ε1H1σ1−ε2Hσσ
2 σ2−ε2Hσh

2 h⊥2 −ikn̂‖ ·
(
ε1G1h

‖
1−ε2G

‖
2h
‖
2

)
−ikn̂⊥

(
ε1G1h

⊥
1 −ε2Ghh2 h⊥2 −ε2Ghσ2 σ2

)
= De . (9)

The set of Eqs. (7–9) now has to be solved to obtain the surface charges and currents.1 After some re-
arrangements, outlined in Appendix A, we arrive at the working equations for BEM with layer structures

(ε1Σ1G
σσ
2 − ε2Hσσ

2 )σ2 +
(
ε1Σ1G

σh
2 − ε2Hσh

2 h⊥2
)
− ikn̂‖ · Γn̂‖(ε1 − ε2)

(
Gσσ2 σ2 +Gσh2

)
h⊥2 −

ikn̂⊥(ε1 − ε2)
(
Ghσ2 σ2 +Ghh2 h⊥2

)
= De − ε1Σ1ϕ+ ikn̂ · ε1a+ n̂‖ · Γ

(
α‖ − Σ1a

‖ + ikn̂‖ε1ϕ
)

(10a)(
Σ1G

hσ
2 −Hhσ

2

)
σ2 +

(
Σ1G

hh
2 −Hhh

2

)
h⊥2 − ikn̂⊥(ε1 − ε2)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
= α⊥ − Σ1a

⊥ + ikn̂⊥ε1ϕ ,

(10b)

1In Ref. [17] the authors used ε2G2 = G2ε2 in order to obtain the L matrices in case of an arbitrary number of media. Such
exchange is possible because G2 only connects points within the same medium. For layer structures, this exchange is no longer
allowed since the reflected Green functions can connect points in different layers and different media. The generalization to
arbitrary number of media is still possible for layer structures, but ε has to be interpreted as a diagonal matrix and G2 and ε2
must not be exchanged.
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with Γ = ik(ε1 − ε2)(Σ1 − Σ
‖
2)−1. The set of equations (10a,b) can be interpreted as a matrix equation for

(σ2, h
⊥
2 ) which is solved through matrix inversion. Once σ2 and h⊥2 are obtained, we get h

‖
2 through the

solution of Eq. (A.1) and σ1, h1 through the solution of Eq. (7). The working equations of Eq. (10) are
somewhat more complicated than those of the original BEM approach [17], but still provide a numerically
tractable approach.

3.3. Reflected Green functions

The Green functions G
‖
2, Gσσ2 , Gσh2 , Ghσ2 , and Ghh2 are essential ingredients of the BEM approach for

layer structures. They are computed similarly to related field-based approaches [7, 24]. Consider a boundary
element with surface charges σ and currents h within a layer structure. σ and h lead to potentials φe = Gσ
and Ae = Gh impinging at the interfaces of the layer structure. In accordance to field-based approaches,
we (i) expand the scalar and vector potentials originating from the source points in cylinder waves, (ii)
compute the surface charges and currents at the interfaces by using the BEM equation (this step is similar
to obtaining the Fresnel reflection and transmission coefficients), and (iii) finally compute the potentials at
the observation points by integrating over all cylinder waves.

In step (i) we employ the usual Sommerfeld identity [7]

eikr

r
= i

∫ ∞
0

kρ
kz
J0(kρρ)eikzz dkρ , (11)

with the wavevector k decomposed into radial component kρ and z-component kz =
√
k2 − k2ρ. J0 is the

Bessel function of order zero. The wave eikzz impinging at the interface becomes reflected and transmitted,
and in step (iii) we have to sum over all reflected and transmitted waves

i

∫ ∞
0

kρ
kz
J0(kρρ)eikzzA(kρ, kz) dkρ , (12)

where A(kρ, kz) is a generalized reflection or transmission coefficient to be discussed below. To evaluate the
integral of Eq. (12) we directly follow Ref. [24] and deform the integration path in the complex plane using
the recipes given in this paper.

To compute the BEM reflection and transmission coefficients for the layer structure, we proceed as
follows. Consider a layer structure with interfaces at zµ. We denote the medium above the layer with µ
and the medium below the layer with µ+ 1. Thus, µ = 1 denotes the uppermost medium. We assume that
the outer surface normal points into the positive z-direction, and denote the surface charges and currents
at the upper side of zµ with σµ2 and hµ2 , and at the lower side of zµ with σµ+1

1 and hµ+1
1 . Additionally, we

introduce the intralayer Green functions Gµ0 that connect points in layer zµ and in medium µ, and interlayer
Green functions Gµ that connect points between different layers in medium µ. Let φµ1,2 and Aµ

1,2 denote the
external excitations described by scalar and vector potentials, respectively.

As the BEM equations (4,5) decouple h‖ from σ, h⊥, we can treat excitations A‖ and φ, A⊥ separately.
For parallel excitations Aµ

1,2, we obtain the following set of equations for the parallel surface currents hµ1,2

Gµ+1
0 hµ+1

1 −Gµ0h
µ
2 −Gµh

µ
1 +Gµ+1hµ+1

2 = Aµ
2 −A

µ+1
1 (13a)

2πi
(
hµ+1
1 + hµ2

)
− kµzGµh

µ
1 − kµ+1

z Gµ+1hµ+1
2 = kµzA

µ
2 + kµ+1

z Aµ+1
1 , (13b)

which can be solved for each wavevector through matrix inversion. For a perpendicular vector potential Aµ1,2
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or a scalar potential φµ1,2 the BEM equations become

Gµ+1
0 σµ+1

1 −Gµ0σ
µ
2 −Gµσ

µ
1 +Gµ+1σµ+1

2 = φµ2 − φ
µ+1
1 (14a)

Gµ+1
0 hµ+1

1 −Gµ0h
µ
2 −Gµh

µ
1 +Gµ+1hµ+1

2 = Aµ2 −A
µ+1
1 (14b)

2πi
(
εµ+1σ

µ+1
1 + εµσ

µ
2

)
+ k

(
Gµ+1

0 εµ+1h
µ+1
1 −Gµ0εµh

µ
2

)
−

kµz εµG
µσµ1 − kµ+1

z εµ+1G
µ+1σµ+1

2 − kεµGµhµ1 + kεµ+1G
µ+1hµ+1

2 =

kµz εµφ
µ
2 + kµ+1

z εµ+1φ
µ+1
1 + kεµA

µ
2 − kεµ+1A

µ+1
1 (14c)

2πi
(
hµ+1
1 + hµ2

)
+ k

(
Gµ+1

0 εµ+1σ
µ+1
1 −Gµ0εµσ

µ
2

)
−

kµzG
µhµ1 − kµ+1

z Gµ+1hµ+1
2 − kεµGµσµ1 + kεµ+1G

µ+1σµ+1
2 =

kµzA
µ
2 + kµ+1

z Aµ+1
1 + kεµφ

µ
2 − kεµ+1φ

µ+1
1 . (14d)

Equations (13) and (14) can be used to compute the reflected Green functions for layer structures. For
instance, to compute Ghσ we consider an exciting scalar potential, produced by a surface charge σ at the
source point, and compute the perpendicular component of the vector potential produced by the induced
surface current distribution hµ1,2 at the observation point. As the solutions of Eqs. (13) and (14) involve the
inversion of matrices of low order (number of layer media multiplied with two or four), this computation is
extremely fast.

4. Implementation

In this section we describe how simulations with layer structures have been implemented within the
MNPBEM toolbox.

4.1. Layer structure

To set up a layer structure, one must provide a table of dielectric functions (the same table epstab

as used in the initialization of comparticle objects), the interface positions ztab, and an index array ind

that points to the different media in descending order. epstab{ind(1)} is the dielectric function of the
uppermost medium above ztab(1), epstab{ind(2)} is the dielectric function for the next medium, and so
forth. With these arrays, we set up a layer structure with

% options for layer structure

op = layerstructure.options( ’rmin’, 1e-2 );

% set up layer structure

layer = layerstructure( epstab, ind, ztab, op );

op is an options structure with the following fields:

ztol (default value 0.02) Boundary elements located closer than ztol to the layer interfaces are assumed
to belong to the layer, see discussion below.

rmin (default value 0.01) Minimum radial distance for the evaluation of the reflected Green functions.

zmin (default value 0.01) Minimum z-value for the evaluation of the reflected Green functions.

semi (default value 0.1) Ratio of semi-axes kmin
ρ : kmax

ρ for the integration in the complex plane, as
described in Ref. [24].

ratio (default value 2) Ratio z : r which determines whether an integration with Bessel or Hankel functions
is performed, as described in Ref. [24].

op Additional options passed to the Matlab ode45 integration routine for the evaluation of the Sommerfeld
integrals in the complex plane.
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The layerstructure class has several functions for the evaluation of the reflected Green functions. More
details can be found by typing

>> doc layerstructure

at the Matlab prompt or by consulting the help pages of the toolbox. Once the layer structure is defined,
it must be added to the options structure

% add layer structure to options

op.layer = layer;

4.2. Tabulated Green functions

Quite generally, the evaluation of the reflected Green functions is rather time consuming and in many
cases constitutes a serious bottleneck for BEM simulations. In order to speed up the simulations, in the
MNPBEM toolbox we first set up a table of reflected Green functions, using a suitable grid for the different
radii r and z-values, and then perform an interpolation.

The reflected Green functions depend on G(r, z1, z2), where r is the radial distance between the obser-
vation and source point, z1 is the z-value of the observation point, and z2 is the z-value of the source point.
For the uppermost or lowermost medium the Green functions only depend on z1 + z2 [7], which allows for
an additional speedup. Within our BEM approach, we additionally need the derivatives Fr = ∂G/∂r and
Fz = ∂G/∂z1 for the evaluation of H2, see Eq. (10). Instead of directly interpolating G, Fr, and Fz, we
assume a functional dependence of the form

G(r, z1, z2) =
g(r, z1, z2)

r̃
, Fr(r, z1, z2) = −fr(r, z1, z2) r

r̃3
, Fz(r, z1, z2) = −fz(r, z1, z2) z̃

r̃3
, (15)

where z̃ is the sum of the z1 and z2 distances to the respective closest layer interfaces, r̃ =
√
r2 + z̃2, and g,

fr, fz are tabulated values. Eq. (15) has the advantage that for small r and z-values the functional shape is
the same as for quasistatic Green functions using image charges [26], and we expect that for layer structures
g, fr, and fz in general have only a weak spatial dependence, as also confirmed by our test simulations.

To set up the table of reflected Green functions, we need to define a grid for the tabulated r, z1, and z2
values. This can be either done automatically (as we recommend) or manually. Through

% Green function mesh for BEM simulation with particle P

tab = tabspace( layer, p );

% mesh for particle P, and compute fields at COMPOINT positions PT

tab = tabspace( layer, p, pt );

% additionally provide number of radii and z-values NR and NZ

tab = tabspace( layer, p, ’nr’, nr, ’nz’, nz );

we set up an automatic grid with logarithmic spacings. Alternatively, one can also set up a structure

% set up table manually

tab = struct( ’r’, rtab, ’z1’, z1tab, ’z2’, z2tab );

The minimal rtab and ztab values should be equal to the layer.rmin and layer.zmin values. It is
important that tab only connects points within a single layer medium. For points located in different media,
one must provide an array of tab values, as produced automatically with the calling sequence involving p

and pt (see also help pages for a more detailed description).
Once the grid is defined, one can precompute the Green function table and add it to the options structure

% initialize Green function table

greentab = compgreentablayer( layer, tab );

% precompute Green function table for wavelength array ENEI

greentab = set( greentab, enei, op );

% add tabulated Green functions to options structure

op.greentab = greentab;

10
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Figure 3: Comparison between DDA simulation for substrates (DDA–SI, [16]) and our BEM implementation. We plot the
extinction cross section for a gold nanosphere (50 nm diameter) located 1 nm above a glass substrate (refractive index n = 1.52).
For the DDA–SI simulation we use 1472 dipoles, for the BEM simulation we use the sphere discretization trisphere(625,50)

with 1246 boundary elements. In [16] the authors additionally compared their results with FDTD simulations, finding perfect
agreement for the entire wavelength regime.

Depending on the grid size and the layer structure, the set call can be rather time-consuming. For this
reason, we recommend to compute the table only if it has not been computed before. Quite generally, a
greentab table with proper grid size can be used for various simulations sharing the same layer structure.
One may thus consider saving it on the hard disk. The toolbox has a layerstructure/ismember function
that checks whether a previously computed Green function table is compatible with other simulations. We
also provide a parallel version parset for precomputation. More details about these features can be found
in the toolbox help pages.

4.3. BEM simulations with layer structures

Once the direct and reflected Green functions have been computed they can be directly used for the
solution of the BEM equations (10). There is one critical issue regarding boundary elements that are
directly located on an interface. Before pondering on such interface elements, we recall that in the normal
BEM approach one has to be careful when computing the surface derivative of the Green function for
diagonal elements [17]

lim
r→s

(n̂ · ∇r)G(r, s′) = (n̂ · ∇s)G(s, s′)± 2πδ(s− s′) , (16)

where the sign of the singular term depends on whether r approaches s from the inside or outside. Inspection
of Eq. (15) shows that a similar singular contribution shows up in the reflected Green function for elements
belonging to an interface. Within the toolbox, boundary elements of p must be located either slightly above
or below the interface. If the centroid position p.pos is closer than layer.ztol to the interface, the program
assumes that it belongs to the interface. The surface derivative Fz of the reflected Green function is now
split into two contributions (note that n̂ points into the z-direction)

Fz(r, z1, z2) = −f0
z̃

r̃3
−
(
fz(r, z1, z2)− f0

) z̃
r̃3
, (17)

where f0 = limr,z̃→0 fz(r, z̃). When approaching the boundary through limr→s Fz(r, z1, z2), the first term
gives a singular contribution ±2πf0δ(s − s′), similarly to Eq. (16), whereas the second term has a smooth
r and z dependence and can be safely integrated over the boundary element.
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Figure 4: Comparison of scattering spectra for different gold nanoparticles, and for retarded (full lines) and quasistatic
(dashed-dotted lines, almost indistinguishable) simulations. For the quasistatic simulations, the substrate (glass) is mod-
eled by the method of image charges. The nanosphere is produced with shift(trisphere(256,5),[0,0,3]) and the substrate
interface is located at z = 0. For the nanodisk we use tripolygon(poly,edge) with poly=polygon(30,’size’,[6,6]) and
edge=edgeprofile(1,11,’min’,0.5), and for the nanotriangle poly=round(polygon(3,’size’,[8,8*2/sqrt(3)])). The gold
dielectric function is taken from [25]. The cross sections of the sphere and disk are multiplied by factors of 100 and 10,
respectively. In the inset we show the contours for the disk and triangle, respectively.

5. Testing the toolbox

5.1. Comparison with DDA

In Fig. 3 we compare results of our BEM implementation with DDA simulations including substrate
effects [16] (DDA–SI). We plot the extinction cross sections for a gold nanosphere (50 nm diameter) located
1 nm above a glass substrate, which is illuminated from above by a plane wave. The agreement between
the two simulations is very good throughout the entire wavelength regime. In [16] the authors found perfect
agreement with complementary FDTD simulations.

5.2. Comparison with quasistatic simulations

The MNPBEM toolbox additionally provides the possibility to simulate nanoparticles above substrates
within the quasistatic approximation, using the method of image charges for the calculation of the reflected
Green function [26]. As this approach is completely different from the BEM approach described in the previ-
ous sections, a comparison between simulations using the full Maxwell equations (retarded) and simulations
employing the quasistatic approximation provide an excellent means for testing our software.

Figure 4 presents simulation results for a nanosphere, nanodisk, and nanotriangle situated slightly above
a glass substrate. The nanoparticle dimensions are on the order of a few nanometers, as specified in the
figure caption, such that the quasistatic approximation can be safely employed. Comparison of the full
simulation results (solid lines with symbols) with those of the quasistatic approximation (dashed-dotted
lines) show excellent agreement for all nanoparticle shapes.

5.3. Disk above substrate

We next investigate the situation where a gold nanodisk approaches a glass substrate from above. In
Fig. 5(a) we start with a disk (60 nm diameter, 10 nm height) that is located 10 nm above the substrate,
and then gradually decrease the distance to the substrate until the disk is placed on the substrate. As
can be seen, with decreasing distance there is a significant redshift of the plasmon scattering peak. Most
importantly, the simulation results for the disk slightly above (0.1 nm) and directly on the substrate (on
subs) give very similar results. For the particle on the substrate, the lower boundary elements are located
less than layer.ztol away from the substrate, such that the singular contribution of the reflected Green
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Figure 5: (a) Scattering spectra for plane wave illumination from above (incidence angle of 40◦) and for a gold nanodisk
(diameter 60 nm, height 10 nm) that approaches a substrate with a refractive index of 1.5 (glass). We produce the disk
with tripolygon(poly,edge), where poly=polygon(30,’size’,[60,60]) and edge=edgeprofile(10,11,’mode’,’01’). We also
compare the situation where the disk is slightly above the substrate (0.1 nm, refined particle integration with refine=3 and
npol=40) and the situation where the disk is located on top of the substrate, see text around Eq. (17) for a discussion. (b)
Scattering spectra for disk on substrate and for different simulation scenarios. sim1 is the same simulation as the on subs

simulation in panel (a). In sim2 we use through edgeprofile(10,25) a higher number of discretization points in z-direction,
and in sim3 we use through polygon(51,’size’,[60,60]) a higher number of discretization points for the nanodisk plates.
Finally, in sim4 we place the lower disk plate slightly below the substrate. All simulations give very similar results, thus
demonstrating the stability and accuracy of our approach. Computer runtimes are on the order of a few minutes.

function can be handled through Eq. (17). Here, a few integration points (refine=1 and npol=10) suffice
to get accurate results. In contrast, for the 0.1 nm distance (which is larger than layer.ztol) we need a
much higher number of integration points (refine=3 and npol=40) to get converged results.

In Fig. 5(b) we investigate different simulation results for the nanodisk on top of the glass substrate to
check the stability and accuracy of our approach. Increasing the number of z-values for the disk (square
symbols) or increasing the degree of discretization for the upper and lower disk plates (diamonds, see figure
caption for details) give practically indistinguishable results. We finally performed a simulation where the
lower disk plate is placed slightly below the substrate interface. This can be achieved with

% table of dielectric functions

epstab = { epsconst( 1 ), epstable( ’gold.dat’ ), epsconst( 2.25 ) };

% layer structure

layer = layerstructure( epstab, [ 1, 3 ], ztab, op );

% nanodisk placed slightly above substrate

p1 = tripolygon( polygon( 30, ’size’, [ 60, 60 ] ), ...

edgeprofile( 10, 11, ’mode’, ’01’, ’min’, 1e-3 ) );

% upper and lower part of nanodisk

[ up, lo ] = select( p1, ’carfun’, @( x, y, z ) z > 1.1e-3 );

% COMPARTICLE object with plate above substrate

p1 = comparticle( epstab, { p1 }, [ 2, 1 ], 1, op );

% COMPARTICLE object with plate below substrate

p2 = comparticle( epstab, { up, shift( lo, [ 0, 0, -2e-3 ] }, [ 2, 1; 2, 3 ], [ 1, 2 ], op );

The corresponding simulation results sim4 are again in excellent agreement with all previous results.
Quite generally, we found that the particle boundaries must be discretized sufficiently fine around the

edges of the lower particle plates in order to get converged results. This is also evident from the surface
charges and currents (not shown) which exhibit strong variations there. However, from Fig. 5 it is obvious
that the details of the discretization are not overly critical, and even for coarse discretizations the scattering
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Figure 6: Scattering spectra for gold nanotriangle placed on top of membrane and excited from above with a plane wave. The
nanotriangle has a base length of approximately 80 nm and a height of 10 nm, and is produced with tripolygon(poly,edge)

where poly=round(polygon(3,’size’,[80,80*2/sqrt(3)]),’nrad’,nrad) and edge=edgeprofile(10,11,’mode’,’01’). The
membrane is a 20 nm thick layer with a dielectric constant of ε = 4. We compare three different discretizations with nrad=5,7,15

resulting in 823, 1256 and 2142 boundary elements, respectively. All discretizations give very similar results.

and extinction spectra are very similar to the converged ones, at least for substrates and layer structures
with not too high permittivities.

5.4. Triangle on membrane

In Fig. 6 we present scattering spectra for a gold nanotriangle placed on top of a membrane with a
thickness of 20 nm and a dielectric constant of ε = 4. The dielectric constants of the layer media above
and below the membrane are ε = 1. We present three different discretizations, with different numbers
of discretization points at the rounded edges of the nanotriangle. Similar to the previous examples, the
influence of the boundary discretization is not very large, although there is a small redshift with increasing
discretization indicating that the results are not fully converged. From additional simulations we observed
that the convergence becomes faster when the dielectric constant of the membrane becomes reduced.

6. Summary

To summarize, we have developed a methodology for a potential-based boundary element method (BEM)
approach to consider substrate and layer structure effects in simulations of plasmonics nanoparticles. We
have implemented our approach within the Matlab MNPBEM toolbox. A significant speedup of our ap-
proach can be achieved by computing the reflected Green functions on a suitable grid and interpolating them
at a later stage. We have compared our implementation with discrete dipole approximation (DDA) simu-
lations including substrate effects as well as with quasistatic simulations, and have found good agreement
throughout. Particular emphasis has been placed on nanoparticles situated directly on substrates, as usually
encountered in experiment. We have presented a few representative examples and have demonstrated the
viability of our approach. Typical runtimes for elementary nanoparticle shapes are on the order of a few
minutes, although simulations can be sufficiently slower for more complicated nanoparticle geometries.

The new version of the MNPBEM toolbox now includes substrate and layer structure effects, for both
retarded (solutions of the full Maxwell equations) and quasistatic simulations. We have implemented plane
wave excitation and the computation of scattering and extinction cross sections, as described in some length
in this paper. Additionally, we provide excitations of oscillating dipoles and the computation of total and
radiative scattering rates, which allows one to compute dyadic Green functions and the photonic local density
of states. Such dipole effects have not been discussed in this paper, but some information can be found
in the help pages of the toolbox. Substrate and layer structure effects have not yet been implemented for
electron energy loss spectroscopy.
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As it stands, the new toolbox provides a flexible toolkit for various plasmonic simulations. We have tried
to implement the new features in a most general fashion, such that a broad class of different situations can
be simulated. So far we have primarily tested substrates and layers consisting of low-permittivity materials.
High-permittivity materials including metals have not been tested properly yet. They might call for refined
particle discretizations, and we thus ask all users to be cautious with the simulation results. Altogether, we
hope that the MNPBEM toolbox will continue to serve the plasmonics community as a useful and helpful
simulation software.
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Appendix A. Deriving the BEM working equations

In this appendix we show how to derive the BEM working equations for layer structures. We first use

Eq. (8a) to express h
‖
2 in terms of h⊥2 and σ2. After some rearrangements we obtain(

Σ1 − Σ
‖
2

)
G
‖
2h
‖
2 = ikn̂‖(ε2 − ε1)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
+α‖ − Σ1a

‖ + ikn̂‖ε1ϕ , (A.1)

with Σ = HG−1. With this, we can express the fourth term on the left hand side of Eq. (9) as

ikn̂‖ ·
(
ε1G1h

‖
1 − ε2G

‖
2h
‖
2

)
= n̂‖ · Γ

[
ikn̂‖(ε1 − ε2)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
+ α̃‖

]
+ ikn̂‖ · ε1a‖ , (A.2)

where we have introduced the abbreviations

Γ = ik(ε1 − ε2)
(

Σ1 − Σ
‖
2

)−1
, α̃ = α− Σ1a+ ikn̂εϕ .

The last term on the left hand side of Eq. (9) becomes

ikn̂⊥
[
ε1
(
Ghσ2 σ2 +Ghh2 h⊥2 + a⊥

)
− ε2

(
Ghσ2 σ2 +Ghh2 h⊥2

)]
= ikn̂⊥(ε1 − ε2)

(
Ghσ2 σ2 +Ghh2 h⊥2

)
+ ikn̂⊥a⊥ .

Substituting equation (A.1) into Eq. (9) then gives

ε1Σ1

(
Gσσ2 σ2 +Gσh2 h⊥2 + ϕ

)
− ε2Hσσ

2 σ2 − ε2Hσh
2 h⊥2 − ikn̂‖ · Γn̂‖(ε1 − ε2)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
−

ikn̂⊥(ε1 − ε2)
(
Ghσ2 σ2 +Ghh2 h⊥2

)
= De + ikn̂‖ · ε1a‖ + n̂‖ · Γα̃‖ + ikn̂⊥a⊥ ,

which finally leads to the first of the two working equations (10a). The second one is obtained by rewriting
Eq. (8b)

Σ1

(
Ghσ2 σ2 +Ghh2 h⊥2 + a⊥

)
−Hhh

2 h⊥2 −Hhσ
2 σ2−ikn̂⊥

[
ε1
(
Gσσ2 σ2 +Gσh2 h⊥2 + ϕ

)
−ε2

(
Gσσ2 σ2 +Gσh2 h⊥2

)]
= α⊥ .

(A.3)
which leads after some rearrangements to Eq. (10b).
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